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We report the observation of the signature of a localization phase transition for light in one-dimensional

quasiperiodic photonic lattices, by directly measuring wave transport inside the lattice. Below the

predicted transition point an initially narrow wave packet expands as it propagates, while above the

transition expansion is fully suppressed. In addition, we measure the effect of focusing nonlinear

interaction on the propagation and find it increases the width of the localized wave packets.
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The localization of waves in nonperiodic media is a
universal phenomenon, occurring in a variety of different
quantum and classical systems, including condensed-
matter [1,2], Bose-Einstein condensates in optical poten-
tials [3,4], quantum chaotic systems [5–7], sound waves
[8], and light [9–19]. In disordered systems, a localization
phase transition is expected to occur in three dimensions as
the strength of disorder crosses a critical value [1,2,14–16].
Lower dimensional systems with uncorrelated disorder do
not exhibit a localization phase transition [2]; however,
finite size systems can exhibit a crossover from an ex-
tended to a localized phase, as was recently observed
[17–19]. In 1979 Aubry and André predicted that for a
certain class of quasiperiodic potentials, a localization
phase transition can occur already in one dimension [20].
Here we report an experiment that realizes the Aubry-
André (AA) model in quasiperiodic photonic lattices. We
observe the signature of a localization phase transition by
directly measuring the expansion rates of initially narrow
wave packets propagating in the lattice. Below the transi-
tion all the modes of the system are extended and therefore
an initially narrow wave packet eventually spreads across
the entire lattice. Above the critical point, all modes are
localized and expansion is suppressed [21]. In addition, we
study the effect of weak nonlinear interactions below and
above the transition.

The AA model describes a 1D tight-binding periodic
lattice with on-site modulation, such that the ratio between
the modulation and the lattice period is � [20]:
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(1)

where c n is the wave function at site n,�0 is the single-site
energy of the (unperturbed) periodic lattice, and C is the
tunneling rate between sites. It has been shown that if � is
an irrational Diophantine number [22], a sharp localization
phase transition takes place at a modulation strength � ¼ 2
(At this point, the Aubry-André Hamiltonian is self-dual
[23] and coincides with the Harper Hamiltonian [24] that

exhibits the famous Hofstadter butterfly fractal spectrum).
In Fig. 1(a) we plot the amplitude of the ground state as a
function of �=C, calculated using Eq. (1) for a system with

99 sites and � ¼ ð ffiffiffi
5

p þ 1Þ=2 (the golden mean, which is a
Diophantine number). At �=C ¼ 0 the lattice is periodic
and the ground state is extended over the entire lattice. As
� is increased the ground state becomes rugged, but re-
mains extended. Right above �=C ¼ 2 the ground state
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FIG. 1 (color online). (a) Calculated amplitude profile of the
ground state of an incommensurate lattice (horizontal axis)
versus the strength of the incommensurate modulation depth �
(vertical axis). A sharp localization transition is observed at � ¼
2C. The wave function is extended for �=C < 2, and localized to
a single site for �=C > 2. A similar transition occurs for all other
eigenstates of the system. (b) The same calculation for a dis-
ordered lattice. Here the localization length goes continuously to
zero. All horizontal cross sections are normalized to a unit
maximum. (c) A quasiperiodic lattice is obtained by modulating
the on-site eigenvalues of the lattice sites (bars, �n ¼
�0 þ � cosð2�n�Þ) at a frequency � that is incommensurate
with the frequency of the lattice (dashed line).
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exhibits a sharp transition, and becomes localized around a
single lattice site. All the other eigenmodes of the Aubry-
André model exhibit the same sharp transition, becoming
tightly localized at different sites of the lattice above
�=C ¼ 2. For comparison we present the same calculation
for a disordered system based on the Anderson model [1]
[Fig. 1(b)], in which the term � cosð2�n�Þ in Eq. (1) is
replaced with �Wn, where Wn are random numbers drawn
from a flat distribution ranging from �1 to 1. In this case
there is no sharp localization transition at nonzero �,
instead there is a smooth decrease of the localization length
as the strength of the disorder � is increased. For infinite
one-dimensional lattices, all eigenmodes of the Anderson
model are localized, even for arbitrarily small disorder
strengths [2]. In a finite size system and weak enough
disorder, the eigenstates appears to be extended since their
localization length is larger than the system size. As dis-
order increases, the eigenmodes become localized within
the finite lattice, with modes near the edges of the spectrum
becoming localized first [2,19]. This, however, cannot be
considered as a phase transition since the amount of dis-
order needed to observe localization goes to zero as the
system’s size goes to infinity. In contrast, in the Aubry-
André model all eigenmodes are extended below the tran-
sition and become localized simultaneously above �c ¼
2C, with a typical width smaller than the size of the system.
The width of the critical region around �c ¼ 2C only
weakly depends on the system size, and the transition is
clearly visible for a system with 99 sites [Fig. 1(a)].

For a finite size system of length L, the requirement to be
incommensurate is that no commensurate frequencies hav-
ing more than one period within L would be less than 1=L
apart from the incommensurate frequency ratio [25]. For
L ¼ 99, the closest commensurate frequency ratio within
1=L of the incommensurate ratio is 1.62, with a period of
50 sites. If the incommensurability condition described
above is not met, the system does not exhibit a sharp
localization transition. For example, in a recent experi-
ment, Roati et al. studied localization of noninteracting
ultracold atoms [4] using a potential formed by two sine
waves with a frequency ratio of �1:1972. The closest
commensurate frequency within 1=L of the incommensu-
rate ratio in this case was 1.2, with a period of 5 sites. As a
result, the passage to localization became smooth and
localization was observed around �=C ¼ 7 [26].

The sharp localization transition has a profound effect
on the transport properties of the system [21]. Consider a
spatially narrow initial wave packet confined to a single
site. Such a wave packet will expand indefinitely if the
eigenmodes of the system are extended, but will come to a
halt if all the eigenmodes are localized [27]. Below the
transition the expansion speed continuously decreases as �
increases, settling to zero for � > �c [21]. Here we mea-
sure wave packet expansion to observe the signature of the
localization transition in quasiperiodic lattices.

In the experiment we use a one-dimensional photonic
lattice of evanescently coupled waveguides [28].

Structures of this type were recently used to study linear
and nonlinear phenomena in one- and two-dimensional
disordered lattices [17–19], featuring the observation of
localized eigenmodes and exponential (Anderson) local-
ization of expanding wave packets. Similarly, two-
dimensional photonic quasicrystals were realized in [29].
The important feature of these lattices is that the time
evolution of waves inside the lattice is combined with
propagation in another spatial dimension [30]. This way,
it is possible to directly image the propagated wave func-
tion inside the lattice, in contrast to traditional transmission
or conductance measurements. Another important advan-
tage is the ability to introduce nonlinearity in a controlled
manner and directly observe its effect on transport.
The propagation of light in waveguide lattices has been

shown to be well described by the discrete nonlinear
Schrödinger equation [28]. For an incommensurate pho-
tonic lattice, Eq. (1) will now read
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þ ½�0 þ � cosð2�n�Þ�c n þ Cðc n�1 þ c nþ1Þ

þ �jc nj2c n ¼ 0; (2)

where z ¼ ct is the free propagation axis, c being the speed
of light in the medium, �0 is the single-site eigenvalue of
the underlying periodic lattice, and � is the Kerr coeffi-
cient. In the linear limit (� ¼ 0) the equations are identical
to the tight-binding model, while for nonzero nonlinearity
these equations are also used to describe the mean-field
evolution of a weakly interacting Bose-Einstein conden-
sates in an optical lattice.
To realize the Aubry-André model, we fabricated a set of

quasiperiodic waveguide lattices, with an incommensurate

ratio of � ¼ ð ffiffiffi
5

p þ 1Þ=2 (the golden mean) and different
values of � (see methods). To measure the expansion rate
of wave packets, we injected a narrow beam into a single
site at the input of the lattices, and measured the output
intensity distributions. For each lattice we have repeated
this procedure for 60 different sites in the same lattice and
averaged the result. Identical samples with different
lengths were used to measure the expansion rate of the
wave packets. Results are presented in Fig. 2. Figure 2(a)
depicts the expansion of a single-site wave packet in a
periodic lattice � ¼ 0 for two different times (equivalent
to 6 mm and 21 mm of propagation). Figure 2(b) depicts
the same results for an incommensurate lattice with �=C ¼
1:6. Here too the wave packets expand during the propa-
gation, yet at a reduced speed as expected from theory
[21,27]. When an incommensurate lattice with �=C ¼ 3:1
is used [Fig. 2(c)], the wave packet remained tightly local-
ized to the input site, and did not expand throughout the
propagation.
The width of a wave packet can be characterized by the

participation ratio (PR) of the wave function, given by
PR ¼ ðP jc nj2Þ2=P jc nj4. A measure of the transition
can be obtained by plotting hPRi (averaged over initial
positions) along the propagation for different values of �.
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The results are presented in Fig. 2(d), showing the tran-
sition from expansion to localization as a function of the
modulation strength. The collapse of the curves for �=C >
2 in Fig. 2(d), as well as their saturation indicate the
localization transition. To compare our results to theoreti-
cal predictions, we plot the measured hPRi of the wave
packets after 21 mm of propagation and the expected
values calculated using Eq. (2) in Fig. 3(a). Figure 3(b)
shows the calculated average width of the expanding wave
packets as a function of the modulation ratio, for different
propagation times. The curves show the transition becomes
sharper for longer propagation times. The transitions is
almost fully converged at Cz ¼ 5, corresponding to the
experiment.

Since the photonic lattices used in these experiments
display nonlinear effects at high light intensities, they offer
the possibility to study experimentally the effect of non-
linear interaction on the propagation before and after the
transition. Various aspects of the role of nonlinear inter-

actions in incommensurate lattices were considered theo-
retically in [31–34]. An experimental investigation was
made of BEC in quasiperiodic potentials [35], yet the
strong interactions in this case are expected to result in a
different quantum phase [36] which cannot be described by
Eq. (2). The measured effect of nonlinearity on wave
packet expansion in our system is presented in Fig. 4(a).
Here we plot the averaged width of the wave packets after
21 mm of propagation as a function of nonlinearity, for
different incommensurate modulation strengths �. As the
results show, for � ¼ 0 an increased nonlinearity results in
a reduced expansion of the wave packet. This is expected
[28], since the sign of nonlinearity in our system corre-

0 2 4 6 8
0

5

10

15

λ/C

P
R

Theory

Experiment

(a)

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

λ/C

 N
or

m
al

iz
ed

 P
R

 C*z=0.5

 C*z=1

 C*z=5

 C*z= 50

Experiment

(b)

FIG. 3 (color online). (a) Comparison between the measured
width of the wave packets after 21 mm of propagation (circles)
and the theoretical values expected from Eq. (2) with � ¼ 0
(line), for different values of �. (b) Theoretical curves for the
average width of the expanding wave packets as a function of the
modulation ratio, for different propagation times. Each curve is
normalized between 0 and 1. The curves show the transition
becomes sharper for longer propagation times and is almost fully
converged at Cz ¼ 5, corresponding to the experiment which is
given on the same scale in blue circles.
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FIG. 4 (color online). Measurements of the effect of nonline-
arity on wave packet expansion in incommensurate lattices.
(a) The averaged participation ratios measured after 21 mm of
propagation, as a function of power and for different incom-
mensurate modulation depths �. For �=C ¼ 0, increased non-
linearity results in a reduced expansion of the wave packet. For
�=C > 2 (the localized regime) nonlinearity results in weak
expansion. (b) Measured output intensity distribution (horizontal
axis) versus power for a single (nonaveraged) initial condition, in
a lattice with �=C ¼ 3:1. In the linear case the output is tightly
localized to the input site, yet it spreads as the power is
increased.
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FIG. 2 (color online). Measurements of a localization transition in incommensurate photonic lattices. (a) The expansion of a single-
site initial wave packet in a perfectly ordered lattice (� ¼ 0) after 6 mm of propagation (blue) and 21 mm (red). (b) The same for an
incommensurate lattice with �=C ¼ 1:6. The wave packet still exhibits expansion, but at a reduced speed. (c) The same for an
incommensurate lattice with �=C ¼ 3:1. The wave packet remains tightly localized about the input position throughout the
propagation, signifying localization. (d) Logarithmic plots of the averaged width of the wave packets (measured by the participation
number PR) at different lengths and for different � values. These curves show the transition from expansion to localization as a
function of the incommensurate modulation strength, signifying the localization transition.
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sponds to self-focusing interaction. For �=C > 2 (the lo-
calized regime) we find that at some input positions, wave
packets that are localized in the linear regime exhibit weak
expansion under the influence of nonlinearity. A typical
example is presented in Fig. 4(b) for a lattice with �=C ¼
3:1. This effect underlies the increase in the averaged
participation ratios presented in Fig. 4(a) for �=C > 2,
indicating a slight increase in width of the localized
wave packet, induced by nonlinearity. For �=C ¼ 1:6 (still
below the localization transition) the expansion is reduced
at low powers, and slowly recovers at higher powers. We
note that the increase of the participation number with
nonlinearity is reproduced by simulations based on
Eq. (2) only at longer propagation distances. Possible
mechanisms for this discrepancy are higher-order nonlin-
ear effects or nonlinear absorption.

In conclusion, we have observed the signature of the
Aubry-André localization transition by directly measuring
the spread of initially narrow wave packets in maximally
incommensurate photonic lattices. We found that in the
localized regime, nonlinear effects result in a slight in-
crease in the width of the localized wave packets. Possible
extensions of this work involves the scrutiny of the critical
regime around �=C ¼ 2 and the study of the role of
nonlinearity near the localization transition. Another
open issue is the survival of localization in the presence
of nonlinearity in the long time limit, a subject currently
debated in relation to disordered (Anderson) lattices [37].

Methods.—To realize the Aubry-André model, a set of
quasiperiodic waveguide lattices on an AlGaAs substrate
was fabricated, using high resolution, large field e-beam
lithography (Vistec VB6), followed by reactive ion etch-
ing. In designing the array to obtain the AA Hamiltonian
we control the width of each waveguide that determines the
on-site potential and the separation between neighboring
waveguides that determines the nearest neighbors tunnel-
ing rate C. The width of each waveguide is designed to
yield an incommensurate modulation according to Eq. (2)
with � being the golden mean. The average waveguide
width and separation are 4:5 �m and 5 �m, respectively.
The waveguide separation was designed to yield an homo-
geneous tunneling rate across the array. The final values for
the coupling rateCwas measured to be 250 m�1. Knowing
the design profile of the sample and the coupling, we
calculated the etch depth to be 1.3 microns, which we
verified independently using a surface profiler (Zygo
NewView 5000). Seven samples were fabricated, corre-
sponding to different values of �. The obtained modula-
tions rates were calculated numerically from the design
profile, and from the etch depth of the fabricated sample.
The finite resolution of the fabrications process � 50 nm,
much smaller than the light wavelength, produced a small
amount of on-site disorder in the actual Hamiltonian.
Using numerically exact calculations based on the final
fabricated profile we were able to estimate the strength of
this fabrication-related disorder to be less than 0:05C. We
verified that this amount of disorder has no significant

effect on the localization transition, as the localization
length associated with this disorder is much larger than
our system.
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