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We present the self-consistent, nonperturbative analysis of isospin mixing using the nuclear density

functional approach and the rediagonalization of the Coulomb interaction in the good-isospin basis. The

unphysical isospin violation on the mean-field level, caused by the neutron excess, is eliminated by the

proposed method. We find a significant dependence of the magnitude of isospin breaking on the

parametrization of the nuclear interaction. A rough correlation has been found between the isospin-

mixing parameter and the difference of proton and neutron rms radii.
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The isospin symmetry, introduced by Heisenberg [1] and
Wigner [2], is largely preserved by strong interactions; a
small violation of isospin on the hadronic level is due to the
difference in the masses of the up and down quarks [3]. In
atomic nuclei, the main source of isospin breaking is the
electromagnetic interaction [4,5]. Since the isovector and
isotensor parts of electromagnetic force are much weaker
than the strong interaction between nucleons, many effects
associated with isospin breaking in nuclei can be treated in
a perturbative way. With this caveat, the formalism of
isotopic spin is a very powerful concept in nuclear structure
and reactions [6,7], where many spectacular examples of
isospin symmetry can be found.

The main effect of Coulomb force in nuclei is to exert a
long-range overall polarization effect on nuclear states
whose detailed structure is dictated by the short-ranged
strong force. The net effect of such a polarization is a result
of two competing trends: the nuclear force is strongly
attractive in the isoscalar neutron-proton channel, while
the Coulomb force acts against this attraction by making
neutron and proton states different. In order to explain this
interplay, self-consistent feedback between strong and
electromagnetic fields must be considered to best locate
the point of the nuclear equilibrium.

An excellent example of this interplay is the systematic
behavior of nuclear binding energies: with increasing mass
number, the stability line bends away from the N ¼ Z line
towards the neutron-rich nuclei. The effect of electromag-
netic force on nuclear binding is clearly nonperturbative.
Even in medium-mass nuclei, which are of principal inter-
est in this study, energy balance between strong and
Coulomb forces is not tremendously favorable, e.g.,
342 MeV versus 72 MeV in 40Ca. The situation becomes
dramatic in superheavy nuclei and in the neutron star crust,
where not only the binding but also spectra are strongly
impacted by the Coulomb frustration effects resulting from
a self-consistent, nonperturbative feedback between strong
and electromagnetic parts of the nuclear Hamiltonian [8,9].

The strong motivator for studies of isospin breaking is
nuclear beta decay. The new data in superallowed 0þ !
0þ nuclear beta decays [10] require improved calculations
of isospin-breaking corrections [11,12]. As far as nuclear
spectroscopy is concerned, there has been an increased
interest in isospin-related phenomena in recent years [7].
For instance, studies of excited states of proton-rich nuclei
with N < Z resulted in significantly improved information
on Coulomb energy differences [13]. In some cases, ob-
served Coulomb shifts turned out to be surprisingly large
[14], thus fueling speculations of significant nuclear
charge-symmetry-breaking forces.
A precise description of Coulomb effects in nuclei con-

stitutes a notoriously difficult computational challenge. In
the shell-model approach to the isospin mixing [15], the
effective shell-model Hamiltonian including the Coulomb
interaction is diagonalized in a proton-neutron basis to
account for nonperturbative effects. The overall strength
of the isospin-breaking interactions is usually renormal-
ized by reproducing the rms proton point radii obtained
from spherical Hartree-Fock (HF) calculations or by fitting
the experimental isobaric mass shifts [15,16]. To take into
account the coupling to the giant monopole resonance that
appreciably influences the radial mismatch between the
proton and neutron wave functions [5], single-particle
wave functions can be taken from HF calculations. More
precise treatments require determining the effective
Coulomb interaction in the large space, which is possible
in the no-core shell model. Such calculations have been
carried out for 10C [17] in the space allowing all 8@�
excitations relative to the unperturbed ground state.
Currently, however, ab initio approaches to superallowed
Fermi transitions do not go beyond 10C which marks the
state of the art.
In heavier nuclei, especially those involving many nu-

cleons outside closed shells, the isospin mixing can be well
described by the mean-field (MF) or energy-density-
functional (EDF) methods [18], where the Coulomb force
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amounts to making the neutron and proton single-particle
orbitals different, and the long-range polarization effects
(e.g., those related to the isoscalar and isovector monopole
resonance) are fully taken into account.

The fact that the MFmethods allow for precise treatment
of long-range operators is, in fact, essential for the physics
of isospin mixing. However, it was very early realized [19–
23] that these nice physical properties of the MF methods
are accompanied by unwanted spurious effects even with-
out Coulomb interaction included. Indeed, the presence of
the neutron or proton excess automatically yields isovector
mean fields, i.e., different HF potentials for protons and
neutrons. This unwelcome feature has hampered MF cal-
culations of the isospin mixing beyond the N ¼ Z systems
(see, e.g., Ref. [24]). To overcome this difficulty, we em-
ploy the mean-field methods in the framework of
Refs. [21,22], which is entirely free of the spurious isospin
mixing. Thereby, for the first time, we determine the iso-
spin mixing within the context of modern EDF methods.

We begin by noting that the self-consistent MF state
jMFi can be expanded in good-isospin basis jT; Tzi:

jMFi ¼ X

T�jTzj
bT;Tz

jT; Tzi;
X

T�jTzj
jbT;Tz

j2 ¼ 1; (1)

where T and Tz ¼ ðN � ZÞ=2 are the total isospin and its
third component, respectively. The basic assumption be-
hind our approach is that the states jT; Tzi capture the right
balance between strong and Coulomb interactions; i.e.,
they contain self-consistent polarization effects to all or-
ders. Below we shall validate this assumption by varying
the MF charge eMF, which defines the strength of the
Coulomb interaction at the MF level, that is, when solving
the self-consistent HF equations. On the other hand, the
mixing coefficients bT;Tz

are not reliably determined by the

MF method, because they are affected by the spurious
isospin mixing.

To assess the true isospin mixing, the total Hamiltonian

Ĥ (strong interaction plus the Coulomb interaction with the
physical charge e) is rediagonalized in the space spanned
by the good-isospin wave functions:

jn; Tzi ¼
X

T�jTzj
anT;Tz

jT; Tzi; (2)

where n enumerates the eigenstates jn; Tzi of Ĥ. The value
of n ¼ 1, corresponds to the isospin-mixed ground state
(g.s.). Only those states jT; Tzi that have tangible contri-
butions to the MF state (1) are used for the rediagonaliza-
tion. In practice, the limit of jbT;Tz

j2 > 10�10 sets the limit

of T � jTzj þ 5. In the following, the g.s. isospin-mixing
parameter �C ¼ 1� jan¼1

jTzj;Tz
j2 and energy En¼1;Tz

obtained

after rediagonalization (AR) are distinguished from the

quantities �C ¼ 1� jbjTzj;Tz
j2 and EjTzj;Tz

¼ hT ¼
jTzj; TzjĤjT ¼ jTzj; Tzi, obtained before rediagonalization
(BR; isospin projection after variation).

Our self-consistent calculations have been carried out by
using the SLY4 EDF parameterization [25] and the HF
solver HFODD [26] that allows for arbitrary spatial defor-
mations of intrinsic states. Both direct and exchange
Coulomb terms are calculated exactly. Details pertaining
to our method can be found in Ref. [27], together with
numerical tests.
To illustrate the effect of the spurious isospin mixing, in

Fig. 1 we show the BR and AR results for the even-even Ca
isotopes. Without Coulomb interaction (eMF ¼ 0), there is
no isospin mixing in the N ¼ Z nucleus 40Ca, but the
neutron-excess-induced mixing appears in all systems
with N � Z. The BR spurious mixing is quite large, �C �
0:2–0:4%. With the standard Coulomb interaction (eMF ¼
e), the BR isospin mixing increases to about 0.2%–0.7%.
The AR results are entirely different. In 40Ca, with

eMF ¼ e we obtain the isospin mixing of 0.9%, which is
about 50% larger than the BR value. A similar increase is
predicted for other N ¼ Z systems (see Fig. 2). This result
nicely illustrates the nonperturbative character of the
Coulomb polarization when it comes to the isospin mixing.
The impact of the isospin mixing on the g.s. structure of
N ¼ Z nuclei also shows up for the total binding energy
(see Fig. 2). Differences between the BR and AR energies
rapidly increase with mass number, to attain about 2 MeV
in A ¼ 100. Interestingly, the AR values are amazingly
close to the HF energies EMF, up to 90 keV. This is a typical
effect of the variational method: the minimum of energy is
reasonably reproduced even if the trial wave function is
rather incorrect in its detailed structure.
The AR isospin mixing is rapidly quenched with jN �

Zj. Indeed, �C in a Tz ¼ 1 nucleus 42Ca drops to 0.2%, and
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FIG. 1. Isospin-mixing parameter �C for the even-even Ca
isotopes determined before (BR) and after (AR) rediagonaliza-
tion in the good-isospin basis jT; Tzi. The basis states were
generated by means of self-consistent calculations without
(eMF ¼ 0; upper panel) and with (eMF ¼ e; lower panel) the
Coulomb term. The inset shows the AR results plotted in the
logarithmic scale.
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then decreases exponentially to about 0.01% in 60Ca. As
seen in Fig. 3, this behavior holds for all isotopes. It is
interesting to see in Fig. 1 that the AR results obtained for
eMF ¼ 0 and eMF ¼ e are quite similar beyond 44Ca. This
indicates that a good-isospin basis jT; Tzi, which is gen-
erated from isospin-broken HF states, only weakly depends
on the strength of the Coulomb interaction included on a
MF level.

This fact is further corroborated by the AR results,
shown in Fig. 4 as a function of eMF. For 0:2e � eMF �
e, the isospin mixing of 0.9% obtained with eMF ¼ e does
not vary by more than 0.01%. At eMF ¼ 0:2e, the ampli-
tude of the jT ¼ 2; Tz ¼ 0i component in the MF wave
function becomes too small to be included in the AR
calculation; hence, the isospin mixing jumps by 0.06%.
This is so, because at this small value of eMF, the �T ¼ 2
coupling of the Coulomb force becomes ineffective and the

T ¼ 2 component of the MF state (1) becomes too small to
be used in the rediagonalization.
The lower panel of Fig. 4 shows the total AR energy as a

function of eMF. Here, we can understand the role of eMF as
a variational parameter that can be used to optimize the
good-isospin basis jT; Tzi. It is gratifying to see that the
minimum of energy is obtained almost exactly at the
physical value of eMF ¼ e. However, it is to be noted that
the energy differences in Fig. 4 are quite small, of the order
of a few hundred keV. These results support our initial
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assumption: the good-isospin states jT; Tzi are fairly robust
to the variations of the isospin-breaking interaction; i.e.,
they well capture self-consistent polarization effects.

Although our results give first reliable estimates of the
isospin mixing within extended MF theory, the final values
of �C are still quite uncertain, which is due to an imperfect
determination of the nuclear EDF. This is illustrated in
Fig. 5 which shows the isospin mixing calculated in BR
and AR variants for 100Sn for a wide selection of the
Skyrme EDF parameterizations [18]. We note that �C

does depend on the nuclear effective interaction: the dif-
ference between extreme AR values obtained for SkO and
SkP is as large as 1.5%, which is about 30% of the value of
the isospin mixing in 100Sn.

In trying to pin down those features of the EDF that
would be responsible for differences in �C, we have
attempted to find correlations between isospin mixing
and various EDF characteristics [18]. We conclude that
no clear correlations exist between �C and those EDF
parameters that are related to nuclear-matter properties.
In particular, this is true for the nuclear-matter symmetry
energy, the prime suspect to influence the properties of the
isovector channel. We did find a very clear correlation of
the BR values of �C with the differences between the MF
proton and neutron rms radii (see Fig. 5). This is not
surprising, as the monopole polarization does impact the
proton and neutron radii, and their difference. However,
after the rediagonalization, the values of �C show a much
weaker correlation. Clearly, the precise values of the iso-
spin mixing parameter depend on fine details of the nuclear
EDF.

In conclusion, we performed the self-consistent analysis
of isospin mixing within the extended mean-field ap-
proach. Our method is nonperturbative; it fully takes
into account long-range polarization effects associated
with the Coulomb force and neutron excess. The nuclear
Hamiltonian, including the full Coulomb interaction, is
diagonalized in a good-isospin basis obtained by isospin
projection from self-consistent HF states. The largest
isospin-breaking effects have been predicted for N ¼ Z
nuclei, where the effects due to the neutron (proton) excess
are smallest and the Coulomb force dominates the picture.

The unphysical isospin violation is significant on the MF
level: the largest effect is predicted in jN � Zj ¼ 2 nuclei.
However, the rediagonalization procedure eliminates the
spurious isospin mixing almost completely. We have dem-
onstrated that one obtains a reasonable good-isospin basis
by broadly varying the strength of the Coulomb interaction
of the EDF. Finally, we investigated the dependence of
isospin mixing on the self-consistent feedback between the
nuclear and Coulomb terms. We found an appreciable
dependence of �C on the parametrization of the nuclear

functional and found a rough correlation between the iso-
spin mixing and the difference between proton and neutron
rms radii.
Discussions with Erich Ormand are gratefully acknowl-

edged. This work was supported in part by the Polish
Ministry of Science under Contract No. N N202 328234,
Academy of Finland and University of Jyväskylä within
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[8] S. Ćwiok et al., Nucl. Phys. A 611, 211 (1996).
[9] C. Horowitz et al., Phys. Rev. C 72, 035801 (2005).
[10] J. C. Hardy and I. S. Towner, Phys. Rev. C 71, 055501

(2005); Phys. Rev. C 79, 055502 (2009).
[11] I. S. Towner and J. C. Hardy, Phys. Rev. C 77, 025501

(2008).
[12] G. A. Miller and A. Schwenk, Phys. Rev. C 78, 035501

(2008).
[13] M.A. Bentley and S.M. Lenzi, Prog. Part. Nucl. Phys. 59,

497 (2007).
[14] J. Ekman et al., Phys. Rev. Lett. 92, 132502 (2004).
[15] W. E. Ormand and B.A. Brown, Nucl. Phys. A440, 274

(1985); Phys. Rev. C 52, 2455 (1995).
[16] M.A. Bentley et al., Phys. Lett. B 451, 445 (1999).
[17] E. Caurier et al., Phys. Rev. C 66, 024314 (2002).
[18] M. Bender et al., Rev. Mod. Phys. 75, 121 (2003).
[19] C. A. Engelbrecht and R.H. Lemmer, Phys. Rev. Lett. 24,

607 (1970).
[20] D.M. Brink and J. P. Svenne, Nucl. Phys. A154, 449

(1970).
[21] E. Caurier et al., Phys. Lett. B 96, 11 (1980); Phys. Lett. B

96, 15 (1980).
[22] E. Caurier and A. Poves, Nucl. Phys. A385, 407 (1982).
[23] N. Auerbach, Phys. Rep. 98, 273 (1983).
[24] J. Dobaczewski and I. Hamamoto, Phys. Lett. B 345, 181

(1995).
[25] E. Chabanat et al., Phys. Scr. T56, 231 (1995).
[26] J. Dobaczewski and P. Olbratowski, Comput. Phys.

Commun. 158, 158 (2004).
[27] M. Rafalski et al., Int. J. Mod. Phys. E 18, 958 (2009).

PRL 103, 012502 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
3 JULY 2009

012502-4


