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A generalized fluctuation-response relation is found for thermal systems driven out of equilibrium. Its

derivation is independent of many details of the dynamics, which is only required to be first order. The

result gives a correction to the equilibrium fluctuation-dissipation theorem, in terms of the correlation

between observable and excess in dynamical activity caused by the perturbation. Previous approaches to

this problem are recovered and extended in a unifying scheme.
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The fluctuation-dissipation theorem is a standard chap-
ter in statistical mechanics [1–3]. A system in thermal
equilibrium has statistical fluctuations proportional to its
response to external perturbations: a small impulse chang-
ing the potential U ! U� hsV at time s will produce a
response R

eq
QVðt; sÞ ¼ �hQðtÞi=�hs in a quantity Q at time

t � s of the form

Req
QVðt; sÞ ¼ �

d

ds
hVðsÞQðtÞieq; (1)

where hVðsÞQðtÞieq is a correlation function quantifying the
equilibrium fluctuations in absence of any perturbation,
and the proportionality constant � ¼ 1=kBT is the inverse
temperature. An early example of this theorem is present in
Einstein’s treatment of Brownian motion, where the diffu-
sion constant, expressed as a velocity autocorrelation func-
tion, is found proportional to the mobility. Other famous
examples include the Johnson-Nyquist formula for elec-
tronic white noise and the Onsager reciprocity for linear
response coefficients.

So far, approaches deriving a fluctuation-dissipation
relation (FDR) for nonequilibrium [4–13] have not found
a physical unification and do not appear as textbook ma-
terial. One reason may be that previous work has not been
seen to identify a sufficiently general structure with a clear
corresponding statistical thermodynamic interpretation.
Today, such an interpretation has become available from
advances in dynamical fluctuation theory for nonequilib-
rium systems.

Aiming to provide a simple and general approach to
FDRs, in this Letter we put forward a FDR for nonequi-
librium regimes in a framework that may represent a uni-
fying scheme for previous formulations. Our main result
can be found in a general formula, Eq. (6) below, which can
also sometimes be rewritten as (7) or (11).

In order to go beyond equilibrium and beyond formal
perturbation theory, it is important to recognize in the
right-hand side of (1) the role of entropy production, as
usual governing close-to-equilibrium considerations.
Equation (1) expresses the correlation between the dissi-

pation represented by entropy production (energy change
divided by temperature) and the observable QðtÞ. Here, for
perturbations of a nonequilibrium system (that already has
a nonvanishing set of flows and hence a nonzero entropy
production), we will rather speak of the excess of entropy
produced by the perturbation hsV.
The second ingredient that is essential in nonequilibrium

is still a less known quantity, called traffic [14] or dynami-
cal activity [15], first introduced in [16]. Perhaps activity
has been somewhat overlooked in the past because it plays
a truly significant role only beyond linear order around
equilibrium [14,17], and it is not part of the picture in
standard irreversible thermodynamics. Our present results
will in fact further clarify the relevance of dynamical
activity. To get a first idea of its meaning, we note that
activity often measures the frequency of transitions in a
trajectory: this is a time-symmetric aspect of dynamical
fluctuations [16] because it does not depend on the direc-
tion chosen to span the trajectory. On the other hand, it is
well known that entropy production is time antisymmetric
[18], changing sign upon reversal of time (fluxes are in-
verted if time is run backward). Thus, both quantities arise
naturally as two complementary pieces of the space-time
action, as reminded below.
We consider a system in an environment at inverse

temperature � (with kB ¼ 1), where a time-independent
nonequilibrium condition can be imposed by external driv-
ing fields or by installing mechanical displacements or
chemical gradients at the boundaries of the system.
Moreover, the system evolves according to a Markovian/
first-order dynamics: for any two observables f and g, their
correlations at times s < t satisfy d

dt hfðxtÞgðxsÞi ¼
hðLfÞðxtÞgðxsÞi where L is a linear operator, called a gen-
erator, acting on observables, and xt is the state at time t at
some reduced, e.g., mesoscopic level of description:
etLfðxÞ ¼ hfðxtÞjx0 ¼ xi, t � 0 [in the sequel we abbre-
viate fðxtÞ ¼ fðtÞ]. The generator L is a standard tool: for
jump processes it is the matrix with transition rates as off-
diagonal elements, while L ¼ ðforceÞ � r þ �=� for over-
damped diffusions. However, it is our aim to leave the
generator L as unspecified as possible, to emphasize the
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generality of the results, referring, e.g., to [5] for further
background.

Our formulation is based on the point of view that the
system can be described by a distribution P ð!Þ over its
possible trajectories ! (space-time paths), giving the state
!s of the system at each time s � t. In general P ð!Þ ¼
P ð!j!0Þ�ð!0Þ, namely, P ð!Þ is the probability of the
initial state !0, i.e., �ð!0Þ, times the probability of the
trajectory P ð!j!0Þ given the starting point. The ensemble
averages of a quantity Oð!Þ are then hOð!Þi �P

!P ð!ÞOð!Þ where P
! is a simple notation including

also a continuum of trajectories. Here we are interested in
comparing probabilities of trajectories for hs � 0 (for
s � 0), P hð!Þ ¼ P hð!j!0Þ�ð!0Þ, with those of the un-
perturbed system. In analogy with the h ¼ 0 case, we use
the notation hOð!Þih � P

!P
hð!ÞOð!Þ for averages in the

perturbed system. We start by writing

P hð!Þ ¼ e�Að!ÞP ð!Þ (2)

and by focusing on the action Að!Þ ¼ � ln½P hð!Þ=P ð!Þ�.
In this setup we put ourselves in line with the Onsager-
Machlup approach but outside equilibrium, possibly be-
yond quadratic or diffusive approximations and also deal-
ing with jump processes.

We ask what determines the path-space distribution and
the space-time local action governing it. To find an answer,
it is useful to decompose Að!Þ ¼ ½Tð!Þ � Sð!Þ�=2 in
terms of its time-antisymmetric component Sð!Þ �
Að�!Þ � Að!Þ and the time-symmetric Tð!Þ � Að�!Þ þ
Að!Þ, where a time-reversed state ð�!Þs is equal to !t�s

(with reversed momenta when applicable). In the time
interval [0, t], in standard physical situations one finds that

Sð!Þ ¼ �

�
htVðtÞ � h0Vð0Þ �

Z t

0
ds

dhs
ds

VðsÞ
�

(3)

is the excess entropy flux from the system to its environ-
ment. Excess is always meant in the sense of the perturbed
process with respect to the original one. From basic ther-
modynamics we know that this entropy flux is �Q, where
Q is the heat flowing to the thermal environment, that is,
minus the change in potential energy of the system minus
the work performed on the system. The reason for (3) is the
physical condition of local detailed balance, which ensures
that the ratio of probabilities of the forward with respect to
the backward trajectory is given by the exponential of the
entropy flux in the forward trajectory [18].

The time-symmetric part Tð!Þ of the action A is the
excess in activity, having an essential role in dynamical
fluctuation theory for the large deviations of the occu-
pations, and in nonequilibrium studies of phase transi-
tions [14,15]. Being in linear response theory (small hs),
we are actually more concerned with the first order in
excess activity �ð!; sÞ ¼ �

�hs
Tð!Þjhs¼0. The excess in ac-

tivity quantifies how ‘‘frenetic’’ is the motion in the per-
turbed process, compared with the unperturbed one. For

example, for a Markov jump process with transition rates
Wðx ! yÞ between states x ! y, the traffic is equal to
twice the time-integrated escape rates over a trajectory,
2
R
t
0 ds

P
yWð!s ! yÞ, and its excess �ðsÞ [here �ð!; sÞ ¼

�ðsÞ depends only on the state !s] to linear order in V is

�ðsÞ ¼ 2
X
y

Wð!s ! yÞfe�=2½VðyÞ�Vð!sÞ� � 1g

’ �
X
y

Wð!s ! yÞ½VðyÞ � Vð!sÞ�

¼ �
dV

ds
: (4)

The last expression is of course formal, the mathematical
meaning being dV=ds ¼ LVðsÞ.
Since Sð!Þ is already linear in hs, we have

� Að!Þ ¼ 1

2
Sð!Þ � 1

2

Z t

0
dshs�ð!; sÞ þOðh2sÞ: (5)

We are now ready to derive the FDR for a single-
time observable Oð!Þ ¼ QðtÞ at time t > 0. Its expec-
tation in the linear response regime is hQðtÞih ¼
hQðtÞi þ R

t
0 dshsRQVðt; sÞ, which we can rewrite

with (2) as hQðtÞe�Að!Þi � hQðtÞi ’ �hQðtÞAð!Þi ¼R
t
0 dshsRQVðt; sÞ. With (3) and (5), it is thus straight-

forward to see that the response function is equal to

RQVðt; sÞ ¼ �

2

d

ds
hVðsÞQðtÞi � 1

2
h�ð!; sÞQðtÞi; (6)

which, as we will see, is a nonequilibrium FDR that gen-
eralizes and unifies previous formulations. We stress that
the derivation of (6) is independent of many details of the
dynamics and hence of its generator L: we went beyond
formalities of a perturbative first-order calculation by spec-
ifying the origin of the two parts on the right-hand side of
(6) in terms of (i) the entropy flux and (ii) the dynamical
activity [14–16], in excess due to the time-dependent
perturbation.
When �ð!; sÞ ¼ �ðsÞ, as in (4) or for overdamped dif-

fusions [19], formula (6) simplifies to

RQVðt; sÞ ¼ �

2

d

ds
hVðsÞQðtÞi � �

2

�
d

ds
VðsÞQðtÞ

�
: (7)

The right-hand side of (7) is nonzero because of the
correlation of VðsÞ with QðtÞ for t > s [20].
When the unperturbed dynamics is in detailed balanced,

we can recover (1) as a special case of (7) by using
time-reversal symmetry: for s < t, hðdV=dsÞQðtÞieq ¼
hðdV=dtÞQðsÞieq ¼ ðd=dtÞhVðtÞQðsÞieq, where the last

equality is a consequence of the Markov property of the
dynamics. Because of stationarity this is then also equal to
�ðd=dsÞhVðsÞQðtÞieq, so that in equilibrium the second

term of (7) gives exactly the same contribution as its first
term, and (1) is recovered.
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As an illustration of the general formula, consider a
system with a flow of interacting particles due to the
presence of reservoirs at different chemical potentials.
We chooseQ ¼ V ¼ N , whereN is the particle number.
Hence, hs induces a global shift in chemical potentials, and
the linearized excess activity �ðsÞ ¼ �dN =ds ¼ �J ðsÞ
is proportional to the systematic particle current J ðsÞ into
the system via its boundaries, i.e., to the expected current
given the configuration at time s. Numerically it is conve-
nient to test the time-integrated version of (7) for constant
perturbation hs ¼ h for s � 0,

�ðtÞ=� ¼ ½CðtÞ þDðtÞ�=2 (8)

with susceptibility �ðtÞ ¼ ½hN ðtÞih � hN i�=h, correla-
tion function CðtÞ ¼ hN 2i � hN ð0ÞN ðtÞi, and nonequi-
librium termDðtÞ ¼ �R

t
0 dshJ ðsÞN ðtÞi. Again, (8) holds

irrespective of the details of interaction or driving.
Here we simulate a boundary driven one-dimensional

exclusion process, a simple paradigmatic model for trans-
port. A state x is an array with empty sites xi ¼ 0 and
particles xi ¼ 1. Nonequilibrium is imposed at boundary
sites i ¼ 1 and i ¼ n, which are in contact with reservoirs
with particle densities d1 and dn ¼ 1� d1, respectively.
There is a nearest neighbor attraction with energy HðxÞ ¼
�P

n�1
i¼1 xixiþ1 determining the Kawasaki dynamics in the

bulk. In this context the systematic current arises from two
possible transitions: x ! y, with y1 ¼ 1� x1, and x ! z,
with zn ¼ 1� xn. Hence

J ðxÞ ¼ ½N ðyÞ �N ðxÞ�Wðx ! yÞ
þ ½N ðzÞ �N ðxÞ�Wðx ! zÞ;

where, e.g., Wðx ! yÞ / d1e
��½HðyÞ�HðxÞ�=2 if a particle

enters at i ¼ 1. Examples in Fig. 1(a) illustrate Eq. (8),
while the magnitude of Cðt ¼ 50Þ and Dðt ¼ 50Þ is shown
in Fig. 1(b) as a function of the driving d1 � dn. Far from
equilibrium CðtÞ � DðtÞ, and thus the correlation function

CðtÞ alone cannot provide a good estimate of the suscep-
tibility �ðtÞ.
In order to connect Eq. (6) [or (7)] with some previous

formulations, it is easy enough to rewrite it in another form.
First remember that causality implies RQVðs; tÞ ¼ 0 for

s � t. Hence, for (6) to be valid for all s, t, one needs

�
d

dt
hVðtÞQðsÞi ¼ h�ð!; tÞQðsÞi for s � t; (9)

which is automatically satisfied in our framework: it fol-

lows from he�Að!Þi ¼ 1, equivalent to hAi ¼ 0 to first order
in hs, via partial integration of (3). By subtracting (9) from
(6) one finds

RQVðt; sÞ ¼ �

2

�
d

ds
hVðsÞQðtÞi � d

dt
hVðtÞQðsÞi

�

� 1

2
h�ð!; sÞQðtÞ � �ð!; tÞQðsÞi: (10)

In stationarity the second line in (10) is an extra term
compared to the equilibrium version (1), in which the
time-antisymmetric correlation between activity � and
the observable Q is evaluated. This term has been called
asymmetry in studies of overdamped Langevin equations
[8] and of discrete stochastic systems [9,10].
Again, when �ð!; sÞ ¼ �ðsÞ, as in (4) and (7), Eq. (9)

implies that �ðsÞ ¼ �LVðsÞ. Hence (6) turns into

RQVðt; sÞ ¼ �

2

d

ds
hVðsÞQðtÞi � �

2
hLVðsÞQðtÞi; (11)

which is the rigorous version of (7). Let us now make
contact with some previous formulations for stationary
processes, where d

ds hVðsÞQðtÞi ¼ d
ds hVð0ÞQðt� sÞi ¼

� d
dt hVðsÞQðtÞi. From our definitions, the last term equals

�hVðsÞLQðtÞi. Alternatively we can think of QðtÞ cor-
related with VðsÞ evolved backward in time by the ad-
joint L� (which generates the time-reversed process):
hVðsÞLQðtÞi ¼ hL�VðsÞQðtÞi. Equation (11) can then be
rewritten as

RQVðt; sÞ ¼ ��

2
hL�VðsÞQðtÞ þ LVðsÞQðtÞi; (12)

which is a generalization of Eq. 2.15 in [7]. Indeed, in the
context of fluctuation theory around diffusive scaling lim-
its, the L� is referred to as the adjoint hydrodynamics in the
infinite-dimensional treatment in Sec. 2.3 of [7]. It is
emphasized there that the response for the adjoint process
is typically along the reversed trajectory from a sponta-
neous fluctuation in the original dynamics. This is also
explicit in (12), as the response in the time-reversed pro-
cess amounts to the same expression upon exchanging L
with L� and t with s. Note however that one needs the
stationary distribution to know L�. The knowledge of this
distribution enables also the derivation of other FDRs [2,4–
6,21]. On the other hand, Eq. (11) does not involve the
stationary law, except for the statistical averaging.
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FIG. 1 (color online). (a) Plots of �ðtÞ=� vs ½CðtÞ þDðtÞ�=2
for times t ¼ 5; 10; . . . ; 50 (other parameters: see legend and
h ¼ �0:1, d1 � dn ¼ 0:8). (b) Cðt ¼ 50Þ and Dðt ¼ 50Þ as
functions of the unbalance between reservoir densities, for � ¼
1, n ¼ 20. At equilibrium (d1 ¼ dn) one has Cð50Þ ¼ Dð50Þ as
expected, while the difference between Cð50Þ and Dð50Þ is not
negligible for strong nonequilibrium.
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We also recover the interpretation of [11]: by using (12),
we rewrite the stationary version of (6) as

RQVðt; sÞ ¼ �
d

ds
hVðsÞQðtÞi � �

2
h½ðL� L�ÞV�ðsÞQðtÞi:

(13)

Note that the response regains its equilibrium form [only
the first term in the right-hand side of (13)] whenever V is a
time-direction neutral observable, in the precise sense that
LV ¼ L�V. Furthermore one can check (say, for over-

damped diffusions and for jump processes) that L� L� ¼
2 j
� � r, where j is the probability current and � is the

stationary distribution on the states. Their ratio is a drift
velocity v ¼ j=�. Hence, for a time-direction neutral po-
tential V, the probability current is orthogonal to its gra-
dient, v � rV ¼ 0, and the equilibrium form of the
response is obtained, in agreement with the observations
in [22]. The same effect is achieved by describing the
system in the Lagrangian frame moving with drift velocity
v. The second term in (13) vanishes also in this case, and
(13) yields exactly the interpretation (and Eq. 4.5) of [11],
which was recently experimentally verified [23].

To finish, we revisit the relation with dissipation to
confirm the prediction in [24] that the usual equilibrium
relation between response and dissipation is preserved
when taking into account only the excess heating and
ignoring the housekeeping heat. During a specific trajec-
tory of the system, the heat dissipation can be split into two
parts: Qhk þQex [24]. The first term is the housekeeping
heat, which is the heat produced in the unperturbed dy-
namics. This is the heat that drives (or is the result of) the
system out of equilibrium. The second partQex is the extra
heat generated through the perturbation, and is just 1=�
times the excess entropy production, which we already
encountered in our calculations:

Q ex ¼ 1

�
hSð!Þih ¼

Z t

0
dshs

d

ds
hVðsÞih: (14)

This expression is of the same form as in equilibrium,
so we will not repeat the calculations here, only the con-
clusion: the (excess) heat is given by the imaginary part of
the Fourier transform of RVV , or, equivalently, the Fourier
transform of the time-antisymmetric part of RVV .
Moreover, we have already written down this time-
antisymmetric part: it is the right-hand side of (10), ex-
tended to t � s.

In conclusion, from physical constraints on the proba-
bility of trajectories, we have obtained a general FDR for
the response of a driven system to the addition of a poten-
tial. It lifts the nonequilibrium FDR beyond formal first-
order perturbation theory applied to a specific dynamics,
by identifying in general physical terms the statistical
quantities that determine the response. Previous formula-
tions are recovered as specific cases. Finally, we have given

observational significance to the notion of dynamical ac-
tivity, which so far has mostly appeared as a theoretical
concept in fluctuation theories.
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