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We present a mechanism to protect quantum information stored in an ensemble of nuclear spins in a

semiconductor quantum dot. When the dot is charged the nuclei interact with the spin of the excess

electron through the hyperfine coupling. If this coupling is made off-resonant, it leads to an energy gap

between the collective storage states and all other states. We show that the energy gap protects the

quantum memory from local spin-flip and spin-dephasing noise. Effects of nonperfect initial spin

polarization and inhomogeneous hyperfine coupling are discussed.
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An essential ingredient for quantum computation and
long-distance quantum communication is a reliable quan-
tum memory. Nuclear spins in semiconductor nanostruc-
tures are excellent candidates for this task. With a
magneton 3 orders of magnitude weaker than electron
spins, they are largely decoupled from their environment,
and the hyperfine interaction with electron spins allows one
to access ensembles of nuclear spins in a controlled way
[1–10]. In particular, the quantum state of an electron spin
can be mapped onto the nuclear spins, giving rise to a long-
term memory [3–7]. Nevertheless, memory lifetimes are
limited, e.g., by dipole-dipole interactions among the nu-
clei. In this Letter, we demonstrate that the presence of the
electron spin in the quantum dot substantially reduces the
decoherence of this collective memory associated with
surrounding nuclear spins. The virtual transitions between
electronic and nuclear states can be used to produce an
energy shift proportional to the number of excitations in
the storage spin-wave mode. This isolates the storage states
energetically and protects them against nuclear-spin flips
and spin diffusion.

Consider a quantum dot charged with a single excess

electron as indicated in Fig. 1. The electron spin Ŝ is

coupled to the ensemble of underlying nuclear spins Îj

by the Fermi contact interaction,

Ĥ hf ¼ A
XN
j

%j

�
ÎjzŜz þ 1

2
ðÎjþŜ� þ Îj�ŜþÞ

�
; (1)

where A is the average hyperfine interaction constant,
A � 90 �eV for GaAs, and %j is proportional to the

electron density at the position of the jth nucleus,
P

j%j ¼
1. For convenience, we introduce the collective operators

Â � P
j%jÎ

j. The first term in Eq. (1) yields the

Overhauser field, an effective magnetic field for the elec-
tron, and also the Knight shift for each nuclei. The flip-flop

terms in Eq. (1), ĤJC ¼ A
2 ðÂþŜ� þ Â�ŜþÞ, can be used to

polarize the nuclear spins [1,2], and to map the electron’s
spin state into a collective spin mode of the nuclei [3–5].
As will be shown here, the same can be used to provide a
protective energy gap.
Fully polarized nuclei.—We start by reconsidering the

storage of a qubit in collective nuclear states [3]. In the case
when all the nuclear spins are initially polarized in the �z
direction (zero temperature limit), the j#ie and j"ie spin
states of the electron are mapped onto the nuclear-spin
states j0i � j � I;�I; . . . ;�Ii and

j1i�A
�

Âþj0i/
X
j

%jj�I; . . . ;ð�Iþ1Þj; . . . ;�Ii; (2)

respectively. ĤJC couples the state j0ij "ie to j1ij #ie with
an angular frequency � ¼ AðPj%

2
j2IÞ1=2. The detuning

between these two states, � ¼ �OH þ �el, comes from the
Overhauser field, �OH ¼ �AI, and from the electron’s
intrinsic energy splitting �el due to, e.g., an external mag-
netic field or a spin-state dependent Stark laser pulse [11].
Coherent flip-flops between the electron and nuclear spins
can be brought into resonance (� � �) through �el. Then
j0ið�j#ie þ �j "ieÞ is rotated to ð�j0i þ �j1iÞj#ie, and the

FIG. 1 (color online). Left: Charged quantum dot with a single,
polarized excess electron. Right: Spectrum of the effective
nuclear Hamiltonian in the presence of a polarized electron.
Off-resonant hyperfine coupling results in a gap �gap between

the storage state j1i and the nonstorage states j1qi. �K denotes

the Zeeman shift due to the effective magnetic field associated
with the electron spin (Knight shift).
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quantum information is transferred from the electron to the
nuclear-spin ensemble and back [3,4].

Assume that, after the qubit has been written into the
nuclei, the polarized electron is not removed from the dot
but the hyperfine flipflops are tuned off-resonant (� � �).
Now, real transitions can no longer take place between
j1ij#ie and j0ij"ie. However, the residual virtual transitions
repel the two states from each other, in analogy to the
dynamic Stark effect. As a result, after adiabatic elimina-
tion of the electronic states, the energy of state j1i gets
shifted by �gap ¼ ��2=4�. The other, orthogonal states

also having exactly one spin flipped (denoted by j1qi in
Fig. 1) are ‘‘subradiant,’’ i.e., are not coupled via ĤJC to the
electron. Therefore, they are unaffected by the shift. This is
the origin of the energy gap.

To understand the protection scheme, let us introduce
nuclear-spin waves. For highly polarized nuclei, one can
introduce bosonic operators through the Holstein-

Primakoff transformation: âj � Îj�=
ffiffiffiffiffi
2I

p
and âyj âj ¼ Îjz þ

I. This allows us to define the bosonic spin waves

�̂ q � X
j

�qjâj; �̂y
q � X

j

��
qjâ

y
j ; (3)

where the unitary matrix �qj describes the mode functions.

We identify the storage mode q ¼ 0 as the one given by

�0j ¼
ffiffiffiffiffi
2I

p
A
� %j, and write j1i ¼ �̂y

0 j0i. This is the mode

which is directly coupled to the electron spin. In fact,

ĤJC � �
2 ð�̂y

0 Ŝ� þ �̂0ŜþÞ is a Jaynes-Cummings coupling

in the bosonic approximation. After adiabatically eliminat-
ing the electronic states, ĤJC reduces to Ĥgap ¼
�A2

4� ÂþÂ� � �gap�̂
y
0 �̂0. As shown in Fig. 1, Ĥgap lifts

the degeneracy between states of different number of
storage-mode excitations. This is the key feature of our
protection scheme: any decoherence process that is asso-

ciated with a transition from the storage mode �̂0 to any

other mode �̂q now has to bridge an energy difference. If

this gap is larger than the spectral width of the noise, the
effect of the noise is substantially reduced.

A more detailed analysis shows that the off-resonant
interaction with the electron spin—which itself is coupled,
e.g., to phonons—leads in general also to an additional
decoherence mechanism for the nuclear spins. If the cor-
responding electron spin dephasing rate � is small com-
pared to the electron’s precession frequency �, the decay
rate for the storage mode is reduced by the low probability
of exciting the electron spin state: ��2=�2 � �.

In addition to the gap, the electron is also responsible for

the Knight shift ĤK ¼ AÂzhŜzi. The relative shift be-

tween the j0i and j1i states, �K ¼ �A
2

P
j%

3
j=
P

j%
2
j , is

typically much less than �gap. When the hyperfine cou-

pling is inhomogeneous, however, j1i fails to be eigenstate
of ĤK. Instead, ĤKj1i ¼ ð� 1

2�
OH þ�KÞj1i þ �j1?i,

where j1?i is orthonormal to j1i and �2 ¼
A2

4

P
j%

4
j=
P

j%
2
j � �2

K characterizes the inhomogeneities.

Thus, the storage mode is only an approximate eigenmode,

and it gradually mixes with nonstorage modes as time
passes. This causes loss of the stored qubit. j1?i is, how-
ever, off-resonant due to the energy gap, and the corre-
sponding probability of finding the system in state j1?i is
bounded by 4�2=�2

gap, so the detrimental effect of the

inhomogeneous Knight shift is suppressed by the energy
gap. In addition, since the admixture of j1?i is a coherent
process, it can be cancelled by refocusing (echo) methods.
A larger gap can be achieved by bringing the hyperfine

interaction closer to resonance. A nonzero external mag-
netic field or laser induced ac Stark shifts [11] can partially
cancel the Overhauser field, such that � � �el � ��OH ¼
AI. (Of course, � should be kept sufficiently large so that
the hyperfine coupling remains off-resonant). The require-
ment of separation of time scales implies � � j�gapj �
� � j�j. To estimate the orders of magnitude of the
different energies, we take an oblate Gaussian electron
density of ratio (1, 1, 1=3) and spin- 12 nuclei. Then we

find that�K and � are inversely proportional to the number

of nuclei N, whereas �, �gap / N�1=2 only [Fig. 2(a)].

To analyze the decoherence suppression, we first con-
sider a simplistic noise model where the nuclear spins are
coupled to fluctuating, classical fields. The corresponding
interaction Hamiltonian is V̂ ¼ P

jB
j � Îj. We assume iso-

tropic Gaussian noise with zero mean and Bj
�ðtÞBk

�ðt0Þ ¼
���	jkCe

��jt�t0j for�, � ¼ x, y, z, where 	jk specifies the

spatial correlations of the noise acting on different nuclei.
For simplicity, the noise spectrum is assumed to be
Lorentzian with a width �, although similar results hold
for other spectra with high-frequency cutoff.
Let us first discuss the dephasing part of the noise,

V̂ z ¼
X
j

Bj
zâ

y
j âj ¼

X
pq

�X
j

Bj
z��

pj�qj

�
�̂y

p�̂q; (4)

(a) (b)

FIG. 2. Hyperfine Rabi frequency (�), protective energy gap
(�gap), Knight shift difference between the logical states (�K),

symmetry breaking couplings due to inhomogeneities (� and !),
and qubit decoherence rates due to dipolar spin diffusion without
(�D) and with (�

0
D) protection. (a) The fully polarized (zero tem-

perature) case shown versus the number of spin- 12 nuclei (N)

taking part in the storage, i.e., located within 3
 of the oblate
Gaussian electron distribution with in-plane variance 
.
(b) Estimated energies in dark states jDn;�i with n spins flipped

from the fully polarized state for N ¼ 105. Energy units are
chosen to match GaAs. �gap is obtained by taking � ¼ 10 �.
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expressed by the bosonic spin-wave operators (3).
Dephasing of individual nuclear spins means transfer of
excitations between different spin-wave modes. Especially,
it leads to both real and virtual transitions from j1i to a
nonstorage state j1qi. As the latter state is ‘‘subradiant’’

and, thus, equivalent to j0i when the memory is read out,
this process essentially results in damping (for real tran-
sitions) and dephasing (for virtual transitions) of the stored
logical qubit [12]. Assuming the zero temperature limit

with all nonstorage modes �̂q�0 in the vacuum state and

formally eliminating them in the Markov approximation
together with the classical fields, we derive a master

equation for the storage mode: d
dt �̂ ¼ i½�̂; Ez�̂

y
0 �̂0� þ

Lzð�̂Þ, with energy shift Ez ¼ ð1��ÞC�gap=ð�2 þ
�2

gapÞ and
Lzð�̂Þ¼�1ð2�̂0�̂�̂

y
0 ��̂y

0 �̂0�̂� �̂�̂y
0 �̂0Þ

þ�2ð2�̂y
0 �̂0�̂�̂

y
0 �̂0��̂y

0 �̂0�̂
y
0 �̂0�̂

� �̂�̂y
0 �̂0�̂

y
0 �̂0Þ: (5)

Here, �1 is the damping rate of the stored qubit while �2

describes its dephasing. The two rates are given by

�1 ¼ C�

�2 þ�2
gap

ð1��Þ; �2 ¼ C

�
�; (6)

where we have introduced the dimensionless parameter
� � P

jk	jk%
2
j%

2
k=ð

P
l%

2
l Þ2 containing the spatial part of

the noise correlator.
When the correlation length of the classical noise is

smaller than the internuclear distance (local uncorrelated
noise, 	jk 	 �jk), � scales inversely with the number of

nuclei (Fig. 3). In this case, the dephasing rate �2 vanishes
as 1=N, which is an effect of the collective nature of the
storage states [12]. The storage is based on encoding the
logical qubit states in a large, delocalized ensemble of N
physical spins. As the decoherence has strongly local
character, it has only a very small effect on the dephasing
of the qubit. Secondly, the loss of the stored qubit is
associated with a change in the number of excitations in
the storage mode. Such transitions are strongly suppressed,
and the damping rate �1 is decreased if �gap is large

compared to the width of the noise spectrum � (or the
corresponding cutoff frequency). Finally, the opposite limit
of infinite spatial correlation length (	jk ¼ 1) corresponds

to a homogeneous random field resulting, e.g., from a
global external source. In that case, � � 1 (see Fig. 3),
and there is no protection against dephasing.
Following a similar but slightly more involved proce-

dure, we can discuss the spin-flip part V̂xy ¼ 1
2

P
jðBj

þÎ
j� þ

Bj�Î
j
þÞ of the noise. When deriving a master equation for

this case, we need to keep higher order terms in the

Holstein-Primakoff approximation: in the next order, Îj� �ffiffiffiffiffi
2I

p ð1� �âyj âjÞâj with � ¼ 1� ð1� 1=2IÞ1=2. Here, we
have neglected the probability of double or more excita-
tions on the same site j, which is reasonable in the high
polarization (T ¼ 0) limit and exact for spin- 12 nuclei. The

Lindbladian describing decoherences due to spin flips
reads, in leading order of 1=N,

Lxyð�̂Þ ¼ ð�3 þ �4Þð2�̂0�̂�̂
y
0 � �̂y

0 �̂0�̂� �̂�̂y
0 �̂0Þ

þ �5ð2�̂y
0 �̂0�̂�̂

y
0 �̂0 � �̂y

0 �̂0�̂
y
0 �̂0�̂

� �̂�̂y
0 �̂0�̂

y
0 �̂0Þ þ �3ð2�̂y

0 �̂�̂0

� �̂0�̂
y
0 �̂� �̂�̂0�̂

y
0 Þ; (7)

which describes decay with rate �4, dephasing with rate
�5, and additionally thermalization (relaxation to the iden-
tity matrix) with rate �3. The rates read

�3 ¼ C�I�0

�2 þ ð�gap þ�KÞ2
; �4 ¼ 2C�I�2

�2 þ ð�gap ��KÞ2
;

�5 ¼ 4C�I�2

�2 þ�2
K

P
j %

4
j

ðPj %
2
j Þ2

: (8)

In the limit of vanishing spatial correlations of the spin-flip
noise, �0 � P

jk	jk%j%k=
P

l%
2
l tends to 1 (Fig. 3), and we

have protection against thermalization (�3) because of the
separation of j0i and j1i by �gap þ�K. The decay corre-

sponding to �4 is due to spin-flip induced transitions
between j1i and j1p; 1qi (the latter containing a total of

two excitations but none in the storage mode), and the
energy to bridge is in the order of �gap � �K (see

Fig. 1). Finally, the last factor in the dephasing rate �5

scales as 1=N, indicating that it is the collective nature of
the storage that leads to protection. Note that the nonline-
arity of the Holstein-Primakoff representation is respon-
sible for this dephasing: the virtual nonstorage excitations
are interacting with the storage mode.
Another potential source of decoherence is nuclear-spin

diffusion due to dipole-dipole interaction between nuclear
spins [13]. The energy gap gives protection against this
effect, too. The dipolar interaction between the pairs of
spins is described in the secular approximation by

Ĥ D ¼ X
j�k

BjkðÎjþÎk� � 2ÎjzÎ
k
zÞ � 2I

X
j�k

Bjkâ
y
j âk; (9)

FIG. 3. The parameters � and �0 describing the effects of
spatial correlations in the classical noise (	jk ¼ e�rjk=	) for

different number of nuclei. The same family of Gaussian elec-
tron densities was used as in Fig. 2. The bullets on the curves
denote the linear size of the dot given by the variance 
.
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where Bjk / ð3cos2
jk � 1Þ=r3jk, rjk ¼ rj � rk is the dis-

tance between two nuclei, 
jk is the zenith angle of the

vector rjk, and we used the first order Holstein-Primakoff

approximation. At full polarization, we can rewrite Eq. (9)

using the bosonic spin-wave mode operators (3) as ĤD ¼P
pq

~Bpq�̂
y
p�̂q. As if it were a central spin coupled to a

mesoscopic spin bath [14,15], the storage mode is coupled
to a bath of nonstorage modes that present a fluctu-
ating, effective transversal magnetic field. If the electron
were not present, these fluctuations would lead, in the

mean-field approximation, to a decoherence rate �D 	
ð2Pq�0j ~B0qj2Þ1=2, which is numerically found to be in

the order of 100 Hz for GaAs [Fig. 2(a)]. With the protec-

tive gap, however, the storage-mode operator �̂0 rotates
rapidly with respect to the other ones, and the above
coupling averages out. The strength of the remaining
coupling between the storage mode and mode q is propor-

tional to ��1
gap

P
r�0

~B0r
~Brq, and the corresponding fluc-

tuations yield a reduced decoherence rate of �0
D 	

��1
gapð2

P
q�0j

P
r�0

~B0r
~Brqj2Þ1=2 as indicated in Fig. 2(a).

Depending on the dot size, the effects of spin diffusion
can be suppressed by several orders of magnitude.

Nonperfect nuclear-spin polarization.—It has been
shown that partially polarized nuclei (at finite temperature)
can also be used for storing a qubit state [4]. Instead of the
fully polarized state j0i, the initial preparation drives the
nuclear ensemble into a statistical mixture of dark states

jDn;�i defined by Â�jDn;�i ¼ 0 and characterized by the

total number of spins flipped n and the permutation group
quantum number �. As the detuning � is adiabatically
swept from far negative to far positive, a superposition of
the j #ie and j "ie electron spin states is mapped into the
mixture of superpositions of the nuclear-spin states jDn;�i
and jEn;�i � A

�n
ÂþjDn;�i, and the qubit state is efficiently

written into the memory [4].
When the electron is left in the quantum dot, it feels

different Overhauser fields for different dark states; hence,

the detuning should be adjusted such that �OH
n þ �el �

Varð�OH
n Þ. Moreover, the hyperfine Rabi frequency�n also

varies with n and the energy gap �gap;n is not the same for

all dark states. This inhomogeneous broadening would
result in dephasing of the qubit, but can be avoided by a
symmetric spin echo sequence [4].

Because of the inhomogeneous nature of the hyperfine

coupling, the Âz;
 operators do not follow the angular

momentum commutation relation. Therefore, jDn;�i is

not an eigenstate of the Knight shift operator, but it is

partially mapped into an orthogonal state: ĤKjDn;�i ¼
� 1

2�
OH
n jDn;�i þ!njD?

n;�i. Furthermore, jEn;�i is neither
an eigenstate of Ĥgap nor of ĤK: ĤjEn;�i ¼ ð� 1

2�
OH
n þ

�K;n þ�gap;nÞjEn;�i þ �njE?
n;�i. The parameters can be

expressed as expectation values in jDn;�i:

�2
n ¼ A2hÂ�Âþi; !2

n ¼ A2

4
ðhÂ2

zi � hÂzi2Þ;
�gap;n ¼ A4hÂ�ÂþÂ�Âþi=4�n�

2
n;

�K;n ¼ A
2

hÂzi �A3hÂ�ÂzÂþi=2�2
n;

�2 ¼ hEn;�jĤ2jEn;�i � hEn;�jĤjEn;�i2:

(10)

The explicit form of the inhomogeneous dark states [4]
allows us to estimate these values [see Fig. 2(b)]. We
expect that the storage mode is still protected as long as
!n and �n are much smaller than �gap;n. Our simulation

suggests that even for a polarization of 80% (n ¼ 104), the
gap is more than 5 times larger than !n and �n.
In summary, we have demonstrated the suppression of

spin dephasing and spin flips in a quantum memory con-
sisting of a delocalized ensemble of nuclear spins in a
quantum dot if the noise has a highly local character and
the spectral width of the noise spectrum is small compared
to the energy gap. We have shown that the memory can be
protected against nuclear-spin diffusion mediated by di-
pole-dipole interaction. We have also analyzed the effects
of inhomogeneous hyperfine couplings and imperfect ini-
tial nuclear-spin polarization.
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