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We develop a low-energy model of an unidirectional Larkin-Ovchinnikov (LO) state. Because the

underlying rotational and translational symmetries are broken spontaneously, this gapless superfluid is a

smectic liquid crystal, that exhibits fluctuations that are qualitatively stronger than in a conventional

superfluid, thus requiring a fully nonlinear description of its Goldstone modes. Consequently, at nonzero

temperature the LO superfluid is an algebraic phase even in 3D. It exhibits half-integer vortex-dislocation

defects, whose unbinding leads to transitions to a superfluid nematic and other phases. In 2D at nonzero

temperature, the LO state is always unstable to a nematic superfluid. We expect this superfluid liquid-

crystal phenomenology to be realizable in imbalanced resonant Fermi gases trapped isotropically.
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The tunability of interactions through Feshbach reso-
nances has led to a realization of an s-wave paired super-
fluidity and BCS to Bose-Einstein condensation (BEC)
crossover [1,2], as well as promises of more exotic states
such as gapless p-wave [3] and periodic Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) [4,5] superfluidity in strongly
correlated degenerate alkali gases. The latter enigmatic
state has been thoroughly explored within BCS mean-field
studies [6–8] and is expected in a population-imbalanced
(polarized) Feshbach resonant Fermi gas [9,10]. While
experiments [11,12] have confirmed much of the predicted
phenomenology of phase separation [10,13,14], the FFLO
states have so far eluded definitive observation.

The simplest mean-field treatments [4,5,10] find that the
FFLO type states are quite fragile, confined to a narrow
range of polarization on the BCS side. However, motivated
by earlier studies [6,7] and based on the finding of a
negative domain-wall energy in an otherwise uniform sin-
glet BCS superfluid [8,15], a more general periodic super-
fluid state may be significantly more stable. Much like a
type-II superconductor undergoes a transition into a vortex
state at a lower-critical field Hc1, here too, a Zeeman-field
driven domain-wall nucleation (with the density increasing
above the lower-critical hc1 field) allows a continuous
mechanism for a transition from a singlet paired superfluid
to a LO-like periodic state [6–8,15].

In this scenario the SF-LO transition is of a
commensurate-incommensurate type as can be explicitly
shown in one dimension (1D) [6,16]. The imposed species
imbalance can be continuously accommodated by the sub-
gap states localized on the self-consistently induced do-
main walls. Such LO state can also be thought of as a
periodically ordered micro-phase separation between the
normal and BCS states, that thus naturally replaces the
macro-phase separation ubiquitously found in the BEC-
BCS detuning-polarization phase diagram [10] (Fig. 1).

With this motivation in mind, here we report on our
study that is complementary to these microscopic mean-
field investigations. Namely, assuming that the LO state is
indeed energetically favorable over a region of a phase
diagram, we explore its stability to low-energy fluctuations
and the resulting phenomenology.
We demonstrate that the low-energy model of the LO

state is that of two coupled smectics, whose moduli we
derive from the BCS theory. Thus a resonant imbalanced
Fermi gas is a natural realization of a quantum (superfluid)
liquid crystal, that unlike the solid state analogs [17–20] is

FIG. 1 (color online). Polarization �N=N vs 1=ðkFaÞ sche-
matic phase diagram, showing LO liquid-crystal phases replac-
ing phase-separated (PS) regime [10]. 3D transition scenarios as
a function of temperature to the normal-nematic (N-Nm),
normal-isotropic (N-I), normal-smectic (N-Sm2Q), and charge-

4 superfluid-nematic (SF4-Nm) phases are illustrated in the
lower panel.
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not plagued by the underlying lattice potential that explic-
itly breaks continuous spatial symmetries.

We find that while it is stable to quantum fluctuations, in
3D a long-ranged LO order is marginally unstable at any
nonzero T. The resulting superfluid state is an algebraic
phase with universal quasi-Bragg peaks and correlations
that admit an exact description [21]. In contrast, crystalline
LO phases with multiple noncolinear ordering wave vec-
tors are stable against thermal fluctuations.

As with earlier mean-field treatments [19,22,23], we
also find an unusual topological excitation—a half vortex
bound to a half dislocation—in addition to integer vortices
and dislocations, in this algebraic LO phase. Because our
conclusions are based on general symmetry principles,
supported by detailed calculations, they are generic and
robust to variations in microscopic details.

In 2D and nonzero T, the state exhibits universal power-
law phonon correlations, controlled by an exactly calcu-
lable [24] fixed point. It displays short-range positional
order with Lorentzian structure function peaks, and is
thus unstable to proliferation of dislocations. The state is
either a ‘‘charge’’-4 (four-fermion) superfluid or a non-
superfluid nematic, depending on the relative energetics of
integer and half-integer vortex-dislocation defects. The
latter normal nematic state is a (complimentarily described
[20]) deformed Fermi surface state [25,26].

Model.—We begin with a Ginzburg-Landau theory that
captures the system’s tendency to order into a finite wave
vector Q0 paired state, with a spontaneously chosen direc-
tion. The free-energy density

H ¼J½jr2�j2�2Q2
0jr�j2�þrj�j2þv1

2
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can be derived from a microscopic BCS model [5,10,27]
near the upper-critical chemical potential difference, hc2,
with
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that can be more generally taken as phenomenological
parameters to be determined experimentally. n, �F, vF,
�BCS, and m are the atomic density, Fermi energy and
velocity, BCS (h ¼ 0) gap and atomic mass, respectively.
Near the lower-critical Zeeman field, hc1, Q0ðhÞ is ex-
pected to vanish with the species imbalance, as the system
continuously transitions into a uniform singlet superfluid
[6–8], with this and other moduli’s dependences derivable
via fluctuating domain-walls methods [27]. Above, j is the
supercurrent and the last term is crucial for getting a non-
zero transverse (to Q) superfluid stiffness in the LO state.
From the first two terms it is clear that the dominant
instability is at a wave vector Q0. Thus, for h < hc2, r <

JQ4
0 ¼ 0:61n="F and the system develops a pairing order

parameter �ðxÞ ¼ P
Qn
�Qn

eiQn�x.
As with other crystallization problems, the choice of the

set of Qn’s is determined by the details of interactions and
will not be addressed here. Motivated by LO findings [5],
we focus on the unidirectional order characterized by a
collinear set of Qn ’s. These fall into two, LO and FF
universality classes. The LO (FF) states are characterized
by breaking (preserving) translational and preserving
(breaking) time-reversal symmetries. Low-energy proper-
ties of such states can be well captured with a single �Q
pair (LO) and a singleQwave vector (FF) approximations.
We focus on the more stable periodic LO state [5–8,15],

only commenting on the homogeneous FF state. Within
the LO approximation the pairing function is given by

�LOðxÞ ¼ �þðxÞeiQ�x þ��ðxÞe�iQ�x, where �� ¼
�Qe

i��ðxÞ are the leading complex order parameters, whose

amplitudes deep in the ordered LO state can be taken to be
equal and constant, �2

Q � c�2
BCS lnðhc2=hÞ, thereby focus-

ing on the two Goldstone modes ��ðxÞ. A rearranged form
of the LO order parameter clarifies its physical interpreta-
tion

�LOðxÞ ¼ 2�Qe
i�scðxÞ cos½Q � xþ �smðxÞ�; (3)

showing that it is a product of a superfluid order parameter
and a unidirectional, spontaneously oriented (along Q)
Cooper-pair density wave, i.e., simultaneously exhibiting
the superfluid and smectic orders. The low-energy proper-
ties are characterized by two Goldstone modes, the super-
conducting phase �sc � 1

2 ð�þ þ ��Þ and the phonon

u ¼ �sm=Q � 1
2 ð�þ � ��Þ=Q. The uniform FF state is

characterized by a single �Q amplitude and a Goldstone

mode �Q.
Substituting �LOðxÞ into H we obtain a Hamiltonian

density for the bosonic Goldstone modes of a generic LO
state:

H LO¼
X
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where we dropped constant and fast oscillating parts, chose
Q ¼ Q0ẑ, and defined phonon fields u� ¼ ���=Q0 and
the bend (K ¼ 4JQ2

0�
2
Q � 2:4n�2

Q=ð�FQ2
0Þ) and compres-

sional (B ¼ 16JQ4
0�

2
Q � 9:8n�2

Q=�F) elastic moduli.

This form (valid beyond above weak-coupling micro-
scopic derivation) is familiar from studies of conventional
smectic liquid crystals [28], with rotational invariance
encoded in two ways. First, for a vanishing � the gradient

elasticity in u� (and u) only appears alongQ, namely @ �
Q̂ � r (compression), with elasticity transverse to Q of a
‘‘softer’’ Laplacian (curvature) type. Second, the elastic
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energy is an expansion in a strain tensor u�QQ ¼ @u� þ
1
2 ðru�Þ2, whose nonlinearities in u� ensure that it is fully

rotationally invariant even for large reorientations Q0ẑ !
Q of the LO ground state.

A nonzero � � v2Q
2
0�

4
Q=m

2 � 1:8n�4
Q=ð�F�2

BCSÞ cou-
pling (minimized by a vanishing supercurrent r�þ þ
r��) removes the two independent rotational symmetries,
orientationally locking the two smectics. This leads to the
superconducting phase �sc ¼ 1

2 ð�þ þ ��Þ to be of a con-

ventional XY type. It is characterized by parallel (�i¼k
s �

B=Q2
0) and transverse (�i¼?

s � 4�=Q2
0) superfluid stiff-

nesses, appearing in the second form of H LO.

Physically, �k
s and �?

s are superfluid stiffnesses for the
supercurrent j ¼ ðjþ þ j�Þ=2 produced by the imbalance
in the left (j�) and right (j�) supercurrent magnitudes and
directions, respectively. We thus find that the LO state is a
highly anisotropic superfluid, with

�?
s =�

k
s ¼ 3

4
ð�Q=�BCSÞ2 � lnðhc2=hÞ � 1; (5)

a ratio that vanishes for h ! h�c2. The FF state is even more
exotic, with an identically vanishing transverse superfluid
stiffness, a reflection of the rotational invariance under
spontaneous current reorientation.

Fluctuations.—The thermodynamics can be obtained
through a coherent path integral. Although there are non-
trivial issues of the interplay between the fermionic quasi-
particles and the Goldstone modes, we can show that at
T ¼ 0 the superfluid and smectic orders (and thus the LO
state) are stable to quantum fluctuations in d > 1 [27].

For T > 0, �sc (�sm) fluctuations diverge and superfluid
(smectic) order is destroyed for d � 2 (d � 3). The LO
state is unstable to thermal fluctuations, displaying quasi-
Bragg (Lorentzian) peaks in 3D (2D) in its structure func-
tion. Thus in both cases the LO order parameter, (3)
vanishes and the state is qualitatively distinct from its
mean-field form, at low T characterized by a charge-4

superfluid order parameter �ð4Þ
sc 	 �2 � 1

2 �
2
Qe

i2�sc .

In the presence of these divergent thermal fluc-
tuations phonon nonlinearities in H LO qualitatively

modify correlations on scales longer than �NL 	
½K3=2=ðB1=2TÞ�1=ð3�dÞ 	 k�1

F ½�2
Q�F=ð�3

BCSTÞ�1=ð3�dÞ (on

shorter scales the harmonic description above applies),

giving universal power laws, e.g., huðz; xÞuð0; 0Þi1=2 	
Max½x�; z��, controlled by a nontrivial low T (order 3�
d) fixed point [21], that has an exact description in 2D with

� ¼ 1=2, � ¼ 1=3 [24]. In 3D, �NL 	 ecK
3=2=ðB1=2TÞ and

phonon correlations grow as a universal power of a loga-
rithm, a result that is asymptotically exact. These elastic
results only hold as long as dislocations remain bound or
on scales shorter than the dislocation unbinding scale.

Defects.—We now discuss topological defects and
phases accessible by their unbinding. With two compact
Goldstone modes �sc, u (equivalently, �� ¼ �2�u�=a),
defects are labeled by vortex and dislocation charges

(2�nv, and). Ordinary vortex, (2�, 0) and dislocation (0,
a) are clearly allowed, and in terms of the two smectic
displacements these respectively correspond to the oppo-
site and same signs of integer dislocations in u�. When
proliferated they destroy the superfluid phase coherence
and smectic periodicity, and either one is sufficient to
suppress the conventional LO order, �LO, (3).
However, because a sign change in �LO due to a a=2

dislocation in u can be compensated by a � vortex in �sc
1=2-charge defects in �sc and u are also allowed, but are
confined into (��,�a=2) pairs [19,22,23]. In terms of the
smectic fields, uþ, u� these correspond to an integer dis-
location in one and no dislocation in the other.
Transitions.—There are many paths of continuous tran-

sitions out of the LO (SF2-SmQ) state. One is through an

unbinding of integer (0, a) dislocations in u. This melts the
smectic order in favor of a nematic, but retains a superfluid
order, thereby transforming the LO state to a nematic
charge-4 superfluid (SF4-Nm). Another path, is by unbind-
ing integer (2�, 0) vortices in �sc. This destroys the super-
fluid order and converts the smectic order Q to 2Q
(N-Sm2Q). A third route out of the LO superfluid is through

a proliferation of (�, �a=2) fractional vortex-dislocation
pairs, that destroy both smectic and superfluid orders,
inducing a transition to a nonsuperfluid nematic (N-Nm).
For 3D these possibilities, determined by the relative en-
ergetics of these defects are illustrated in Fig. 1. In 2D, the
dislocation energy is finite and the LO state is necessarily
destabilized by thermal fluctuations to a charge-4 super-
fluid nematic, SF4-Nm. Upon rotation the resulting
nematic superfluid will display � vortices (

H
v � dl ¼

h=4m), that (due to nematic order) will form a uniaxially
distorted lattice. This rich fluctuations-driven phase behav-
ior contrasts sharply with a direct LO-N transition (de-
scribed by Uð1Þ 
Uð1Þ Landau theory Hmft ¼
rðj�þj2 þ j��j2Þ þ 	1ðj�þj4 þ j��j4Þ þ 	2j�þj2j��j2)
found in mean-field theory.
Fermions.—We now turn to a discussion of the fermi-

onic sector that we have so far ignored. Near hc2 a single
harmonic (Q for FF and �Q for LO states) approximation
is sufficient. Unlike the simpler FF case (that can be
diagonalized exactly with a two-component Nambu spinor
[10]), the LO state involves a three-component spinor

�̂k � ðĉ�kþQ"; ĉ
y
k#; ĉ�k�Q"Þ. Neglecting sparse off-

resonant coupling between k and kþ 2Q Cooper pairs

and noting that only two of the three components in �̂k

are resonant at any one k, the approximate spectrum is

given byEk;
;�Q ¼ ð"2k þ �2
QÞ1=2 � 
ðh� k�Q

2m Þ, with
 ¼
�1, "k ¼ k2

2m ��þ Q2

8m , � ¼ 1
2 ð�" þ�#Þ, and h ¼

1
2 ð�" ��#Þ. The regions of k where Ek;
;�Q is negative

corresponds to a Fermi sea (rather than the usual vacuum)
of Bogoluibov quasiparticles in the BCS ‘‘vacuum’’, and
therefore leads to a Fermi surface of gapless fermionic
excitations. These are nothing but the unpaired fraction
of the majority atoms. From the spectrum above it is clear
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that two distinct LO states are possible. One, LO1 exhibits
a single (majority) species, fully polarized Fermi surface
pockets. The other, LO2 is characterized by both majority
and minority fermion flavor Fermi surface pockets. The
Fermi surface volume difference is proportional to the
species imbalance and the anisotropy encodes the long-
range orientational order of the LO state. Because the
polarization is conserved and Goldstone mode fluctuations
are finite at zero temperature, we expect the LO1-LO2
quantum transition to be of a simple band filling type.

In the complementary regime near hc1, the excess ma-
jority atoms occupy additional states localized on domain
walls [6–8,15]. Because the atoms can freely move along
and tunnel between adjacent domain walls, near hc1 they
exhibit a ‘‘metallic’’, but highly anisotropic dispersion.
The resulting fermionic spectrum is qualitatively consis-
tent with that near hc2, Ek;
;�Q.

The interactions between the Goldstone modes and un-
paired majority fermionic atoms c must now be included
and are given by

H js;j 	 ir� � c yrc þ H:c:; H js;n 	 ðr�Þ2c yc ;

H a�p 	
�
@zuþ 1

2
ðruÞ2

�
c yc þ iru � c yrc þ H:c:

(6)

As with other analogous problems [25], we expect these to
lead to Landau-like damping of the Goldstone modes �sc,
u, and a finite fermionic quasiparticle lifetime. We leave
the study of these and other affects on the properties of the
LO states to the future.

Trap effects.—Since near hc2 the LO period 	Q ¼
2�=Q0 (2) is bounded by the coherence length (that near

unitarity can be as short as 	R=N1=3, where R is the
trapped condensate radius and N is the total number of
atoms), and thus� R, in this regime the trap can be treated
via a local density approximation (LDA). For 	Q � R,
LDA predicts weak pinning of the LO smectic, that can be
estimated via finite size scaling, with trap size R cutting off
hu2i 	 � logðR=	QÞ, leading to h�LOi 	 ð	Q=RÞ� � 1
that no longer truly vanishes, but is still strongly sup-
pressed. We thus expect the predicted strong fluctuations
effects to be experimentally accessible. We note, for ex-
ample, that Kosterlitz-Thouless phase fluctuation physics
has been reported in 2D trapped superfluids [29], despite
the finite trap size. However, a more detailed analysis of the
trap effects is necessary, particularly near hc1, for a quan-
titative comparison with experiments.

To summarize, we studied fluctuation phenomena in a
LO state, expected to be realizable in imbalanced resonant
Fermi gases. The LO state is a superfluid smectic liquid
crystal, whose elastic moduli and superfluid stiffness we
derived near hc2. It is extremely sensitive to thermal fluc-
tuations that destroy its long-range positional order even in
3D, replacing it by an algebraic phase, that exhibits vortex
fractionalization, where the basic superfluid vortex is half
the strength of a vortex in a regular paired condensate. This

should be observable via a doubling of a vortex density in a
rotated state. Also under rotation, the high superfluid an-
isotropy (5) leads to an imbalance-tunable strongly aniso-
tropic vortex core and a lattice highly stretched along Q.
Bragg peaks in the time-of-flight images can distinguish
the periodic SF2-SmQ (superfluid smectic) state from the

homogeneous SF4-Nm (superfluid nematic), which are in
turn distinguished from the N-Sm2Q and N-Nm (normal

smectic and nematic) by their superfluid properties, peri-
odicity, collective modes, quantized vortices, and conden-
sate peaks. Thermodynamic signatures will identify
corresponding phase transitions.
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