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Binocular rivalry is investigated in a continuum model of the primary visual cortex that includes neural

excitation and inhibition, stimulus orientation preference, and spike-rate adaptation. Visual stimuli

consisting of bars or edges result in localized states of neural activity described by solitons. Stability

analysis shows binocular fusion gives way to binocular rivalry when the orientation difference between

left-eye and right-eye stimuli destabilizes one or more solitons. The model yields conditions for binocular

rivalry, and two types of competitive dynamics are found: either one soliton oscillates between two

stimulus regions or two solitons fixed in position at the stimulus regions oscillate out of phase with each

other.
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Binocular rivalry occurs when we view certain dissimi-
lar monocular stimuli, such as a series of horizontal bars
with one eye and a series of vertical bars with the other.
This leads to alternations in visual perception, where one
eye’s input dominates, then the other’s [1,2]. A similar
phenomenon occurs when viewing ambiguous figures
such as the Necker cube [2], where two perceptual inter-
pretations alternate over time. Binocular rivalry is linked to
neural activity in the primary visual cortex (V1) [3,4],
where neurons respond most strongly to visual stimuli
such as a bar or edge of particular orientation [5]. This
orientation preference (OP) changes smoothly across V1,
except at isolated locations [5]. Visual stimuli consisting of
bars or edges of specific orientation therefore activate
specific groups of neurons in V1. Key elements in most
neural models of visual rivalry include reciprocal inhibi-
tion and adaptation [6–9]: reciprocal inhibition takes place
over fast time scales and involves neurons coupled so that
when one set is active, another set is suppressed, while
adaptation causes the active neurons to fatigue over slow
time scales, allowing the suppressed neurons to become
active. While current neural models successfully reproduce
some key properties of binocular rivalry, such as the dis-
tribution of perceptual dominance durations [6,8,9], and
the propagation of dominance changes across V1 [8], there
are no clear predictions of what conditions trigger the
breakdown of binocular fusion (where inputs to left and
right eyes form a stable fused percept) and the onset of
rivalry. It is also unclear what types of dynamics take place
during rivalry, with some findings suggesting neural activ-
ity consists of traveling waves [4,8], and others that alter-
nations in activity remain fixed in position [7,9].

In this Letter, we present a physiologically based con-
tinuum model of binocular rivalry that allows detailed
investigation of the fusion-rivalry transition as stimulus
parameters are varied and exhibits two types of competitive
neural dynamics consistent with rivalry. For simplicity we

consider a one-dimensional (1D) slice through V1, and
calculate the activity uðx; tÞ of neural populations coupled
through a synaptic connectivity function wðRÞ which de-
pends on the distance R between neurons, and subject to a
visual stimulus hðxÞ that drives neural activity. The dy-
namical equations are

D fuðx;tÞ¼
Z 1

�1
wðx�x0ÞHðuðx0; tÞ��ðx0; tÞÞdx0 þhðxÞ;

(1)

D s�ðx; tÞ ¼ �0 þ �uðx; tÞHðuðx; tÞÞ; (2)

where Da � �a@=@tþ 1, �a is a time constant, and H is
the unit step function: satisfying HðxÞ ¼ 0 if x < 0, and
HðxÞ ¼ 1 if x � 0. Equation (1) describes the fast process
where incoming spikes are smoothed into pulses of dura-
tion �f at the synapses of a neuron [7,8,10]. The spiking

rate of a neural population is assumed to follow a threshold
response Hðu� �Þ. Equation (2) describes slow processes
which cause the spiking rate to adapt over time [7,8,11,12],
and changes the spiking threshold �ðx; tÞ over a time scale
�s � �f; HðuÞ is used in (2) so the coupling is linear in u

for u > 0, and zero for u < 0.
Visual stimuli consisting of bars or edges activate groups

of neurons in V1 with OP near the stimulus orientation—
some sensitive to left-eye stimuli, others to right-eye stim-
uli. Since OP varies across V1, stimuli of different orien-
tations are mapped to different parts of V1 even when they
are from the same point in the visual field. A typical 1D
slice through V1 (see Fig. 1) that includes the full OP range
0�–180�, plus left-eye and right-eye stimulus preferences,
contains the essential elements for a fusion-rivalry transi-
tion, and is consistent with the known structure of V1 [5].

Monocular stimuli are included in (1) using hðxÞ=hmax ¼
e�ðxþd=2Þ2=� þ e�ðx�d=2Þ2=�, where d is the distance be-
tween stimulus regions in V1 and depends on the orienta-
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tion difference between left-eye and right-eye stimuli as in
Fig. 1, � is the OP width, and hmax is determined by
stimulus strength. The only conditions we impose on
wðRÞ for rivalry arewð�xÞ ¼ wðxÞ, andwðRÞ< 0 for large
R. These are satisfied by a Mexican-hat form commonly

used in cortical models: wðRÞ ¼ ce�R2=r2
1 � ðr1=r2Þe�R2=r2

2

with r1 < r2 and c > 0—although excitatory connections
inwðRÞ are unnecessary for rivalry as neural activity can be
driven above threshold by the stimulus term in (1).

Extending the analysis in [10] to nonuniform hðxÞ and
�ðx; tÞ, we set time derivatives in (1) and (2) to zero, and
consider an equilibrium comprising Ns spatially localized
regions each with u > � over width m centered at ai:

usðxÞ ¼
XNs

i¼1

Z m=2

�m=2
wðx� x0 � aiÞdx0 þ hðxÞ; (3)

�sðxÞ ¼ �0 þ �uðxÞHðuðxÞÞ: (4)

We term these localized states solitons [13]: in [14] states
similar to those given by (3) were shown to have several
particlelike properties, and despite the nonlinearity, dissi-
pation, and external driving present, perturbed equilibrium
states always remained localized in numerical simulations
of (1) and (2). Consistency requires uðxÞ ¼ �ðxÞ at the
boundaries of each localized region, and is implemented
using (3) and (4) with usðai �m=2Þ> 0, yielding 2Ns

simultaneous equations usðai �m=2Þ ¼ �0=ð1� �Þ. For
Ns ¼ 1 and a1 ¼ 0, we get usð�m=2Þ ¼ �0=ð1� �Þ.
Upon using (3) and the symmetry hð�m=2Þ ¼ hðm=2Þ,
this becomes

Z m

0
wðxÞdxþ h

�
�m

2

�
¼ �0

1� �
; (5)

which is used to determinem. An equilibrium from (3)–(5)
is shown in Fig. 2(a).

To determine equilibrium stability we apply an Evans
function technique [11], in which linear deviations given
by uðx; tÞ ¼ usðxÞ þ �uðxÞe�t and �ðx; tÞ ¼ �sðxÞ þ
��ðxÞe�t are substituted into (1) and (2), and an eigenvalue
equation is generated by expanding to first order in �uðxÞ
and ��ðxÞ. Defining ðx1; x2Þ ¼ ð�m;mÞ=2 for Ns ¼ 1, this

eigenvalue equation can be written as Eð�Þ ¼ 0, with

E ð�Þ ¼ det

�Dfð�ÞDsð�Þ
Dsð�Þ � �

I �A
�
; (6)

where A is a 2Ns � 2Ns matrix with elements Aij ¼
wðxi � xjÞ=ju0sðxjÞ � �0sðxjÞj, I is an identity matrix, and

Dað�Þ ¼ �a�þ 1. The derivatives are found from (3) and
(4), giving ju0sðxiÞ � �0sðxiÞj ¼ ð1� �Þjwðxi þm=2Þ �
wðxi �m=2Þ þ h0ðxiÞj for Ns ¼ 1. Contours of ReEð�Þ ¼
0 and ImEð�Þ ¼ 0 are shown in Fig. 2(b) for the Ns ¼ 1
equilibrium, and Eð�Þ ¼ 0 where they intersect, corre-
sponding to an eigenvalue of the linear stability problem.
For d < dc (’1:77 in Fig. 2), where d depends on the
orientation difference between left-eye and right-eye stim-
uli as in Fig. 1, we find Re� < 0 so the one-soliton equi-
librium is stable. We interpret this as binocular fusion: two
monocular stimuli form a stable nonoscillating percept [6].
As d increases, the orientation difference between the two
monocular stimuli reaches a critical level at d ¼ dc, where
a pair of complex-conjugate eigenvalues cross Re� ¼ 0:
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FIG. 2 (color online). Fusion-rivalry transition for Ns ¼ 1.
(a) Equilibrium us (solid line) and �s (dash-dotted line) from
(3)–(5) for a stimulus (dashed line), and parameters hmax ¼ 0:64,
� ¼ 1, d ¼ 1:77, c ¼ 0:7, r1 ¼ 2, r2 ¼ 4:5, �0 ¼ 0:2, and � ¼
0:56. (b) Zeros of Eð�Þ from (6) with �f ¼ 20 ms and �s ¼
500 ms occur at intersections of the solid line and the dotted line.
(c) Numerical solution for uðx; tÞ> 0:8 from (1) and (2).
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FIG. 1. Mapping of visual stimulus to V1 slice. A bar viewed
by the left or right eye drives activity in V1 at a position where
the bar orientation matches neural OP (bars) and eye preference.
Examples are shown where both eyes view horizontal bars (left)
and where the left eye views a horizontal bar and the right eye
views a vertical bar (right).
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the one-soliton equilibrium is now unstable to a Hopf
bifurcation. The numerical solution for uðx; tÞ is shown in
Fig. 2(c), where high neural activity localizes to one stimu-
lus region for approximately 0.5 s before moving to the
other stimulus region for approximately 0.5 s, and so on.
We interpret this as binocular rivalry: two monocular stim-
uli lead to oscillations between states where one stimulus is
dominant and the other is suppressed [6].

The origin of the Hopf instability for Ns ¼ 1 is the
following: the coupling term in (2) causes the spiking
threshold to increase over time �s in the soliton region,
resulting in a translational instability as the soliton moves
to avoid a region of high threshold. However, a stimulus
breaks translational symmetry and tends to pin the soliton.
For d < dc, one soliton can span both stimulus regions and
so remains centered midway between them. At d ¼ dc, this
is no longer the case just off equilibrium, and the soliton
must choose one region or the other. As the spiking thresh-
old increases in one region, the soliton eventually moves to
the other, as in Fig. 2(c). This is consistent with rivalry as a
single soliton that oscillates between two stimulus regions.

To find the Ns ¼ 2 equilibrium we assume ða1; a2Þ ¼
ð�a; aÞ=2 for a > 0, leading to usð�a=2�m=2Þ ¼
�0=ð1� �Þ. The stimulus symmetry obeys hð�a=2�

m=2Þ ¼ hða=2þm=2Þ and hð�a=2þm=2Þ¼hða=2�
m=2Þ, reducing the four equations to two. One is

Z m

0
½wðxÞ þ wðxþ aÞ�dxþ h

�
�m

2
� a

2

�
¼ �0

1� �
; (7)

which determines m when a is fixed. Subtracting the
remaining equation from (7), yields

Z m

0
½wðxþ aÞ � wðx� aÞ�dx ¼ h

�
m

2
� a

2

�

� h

�
�m

2
� a

2

�
; (8)

which determines a when m is fixed. Both (7) and (8) are
solved self-consistently. Solitons usually repel due to long-
range inhibition, and a ! 1. However, inclusion of a
stimulus allows (8) to be solved for finite a, and a re-
sulting equilibrium is shown in Fig. 3(a). Defining
ðx1; x2; x3; x4Þ ¼ ð�m � a; m � a;�m þ a; m þ aÞ=2
generates the previous eigenvalue equation, with Eð�Þ from
(6) and ju0sðxiÞ � �0sðxiÞj ¼ ð1� �Þjwðxi þm=2þ a=2Þ þ
wðxiþm=2�a=2Þ�wðxi�m=2þa=2Þ � wðxi�m=2�
a=2Þþh0ðxiÞj. The two-soliton equilibrium is stable for
d > dc (’6:1 in Fig. 3), and we interpret this as binocular
fusion. As d decreases, at d ¼ dc a pair of complex-
conjugate eigenvalues cross Re� ¼ 0 in Fig. 3(b) and the
two-soliton equilibrium becomes unstable to a Hopf
bifurcation. The numerical solution for uðx; tÞ is shown in
Fig. 3(c), where neural activity grows in one stimulus
region for approximately 1.5 s, before it decays there and
grows in the other stimulus region for approximately 1.5 s,
and so on. We interpret this as binocular rivalry.
The Hopf instability for Ns ¼ 2 has a different origin to

that for Ns ¼ 1. Both stimulus regions are now occupied,
so each soliton remains fixed in position. For d > dc, there
is only weak reciprocal inhibition between two solitons
and both remain above threshold. At d ¼ dc, each soliton
inhibits the other more strongly, and just off equilibrium
only one can remain above threshold. However, this domi-
nant soliton falls below threshold after �s, releasing the
suppressed soliton from inhibition. The latter then grows
above threshold and becomes dominant, as in Fig. 3(c).
This is consistent with rivalry as two solitons, one fixed at
each stimulus region, that oscillate out of phase with one
another.
Complete dominance of either monocular stimulus is

less likely as both stimuli extend over a larger part of
V1; instead, rivalry breaks up into a patchwork of zones
of alternating dominance [1,2,6]. This can be described in
our model by considering an extended 1D slice with spa-
tially periodic OP and eye preference. We take the basic
unit cell shown in Fig. 1 and repeat it N times end to end:
setting the unit cell length to L ’ 2r2 based on estimates of
	1 mm unit cell size [5,15], and the 	0:5 mm range of
nonspecific lateral connections in V1 [15,16]. As the ori-
entation difference �� between two monocular stimuli
increases, binocular fusion gives way to binocular rivalry
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FIG. 3 (color online). Fusion-rivalry transition for Ns ¼ 2.
(a) Equilibrium us (solid line) and �s (dash-dotted line) for a
stimulus (dashed line) with d ¼ 6:1 and other values as in
Fig. 2. (b) Zeros of Eð�Þ. (c) Numerical solution for uðx; tÞ>
0:5 from (1) and (2).
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at ��c ¼ 180�ðdc=LÞ, where dc is the critical value of d
for Ns ¼ 1. For small �� � ��c, interactions between
solitons in neighboring unit cells are weak, so each soliton
alternates independently on short time scales. A patchwork
forms unless neighboring alternations all begin precisely in
phase and the system is noise-free. As �� increases, the
interactions become stronger, until at �� ¼ 90� (d ¼
L=2) there is equal reciprocal inhibition between all sol-
itons and the activity in each unit cell is far from the Ns ¼
1 equilibrium. Fusion eventually sets in again as �� !
180� and the orientations are again similar. In Fig. 4(a),
��c is plotted for different values of the stimulus parame-
ters. The results agree with [17], where ��c for fusion-
rivalry and rivalry-fusion transitions was 17.1�–30.4�.
Figure 4(a) also shows ��c increasing approximately
linearly with increase in hmax and decrease in �. The reason
for the � dependence is that it is less likely one soliton can
span two stimulus regions as each region widens, so the
soliton becomes unstable at smaller ��c. The h depen-
dence is due to the above tendency of a stimulus to pin a
soliton. This behavior can be interpreted using the energy
(i.e., Lyapunov) function F of Eq. (1), which has a
stimulus-dependent part given by F stim ¼ �hh;Hðus �
�sÞi, where hf; gi is the inner product of functions f and
g [14]. This means that energy is minimized in regions of
soliton-stimulus overlap where h is maximal, so increasing
h stabilizes a soliton—raising ��c in Fig. 4(a). In [17], a
lower stimulus contrast led to larger ��c, meaning that
hmax should be inversely related to stimulus contrast. This
interpretation is supported by [18], where decreasing the
contrast of one stimulus corresponded to a decrease in F
(i.e., by increasing h) of the opposite stimulus, thereby
lengthening its dominance duration—as found experimen-
tally [1,2,18]. In our model, ��c is therefore determined
by OP periodicity and the range of lateral connections in
V1, as well as specific stimulus attributes.

A histogram of stimulus dominance durations simulated
from (1) and (2) with added noise is shown in Fig. 4(b).
Specifically, we addedþ1:5 or�1:5with equal probability
to the right-hand side of (2) at each time step and each
grid point. Each time u crossed ���� (where ��� was
used to ensure a definite switch in dominance had taken
place) at a point chosen near the stimulus maximum, the
time since the previous crossing was recorded. A total
of 3137 crossings were simulated. A gamma distribution
��x��1e��x=�ð�Þ was fitted to the histogram in Fig. 4(b)
by matching the mean and variance of both, giving � ¼
1:9 and � ¼ 2:9. These values are well within the ranges
� ¼ 1:3–6:7, and � ¼ 0:46–4:0 from fits to experimental
and simulated distributions [6,7,9].
In summary, we have developed a soliton model that

gives the first theoretical prediction of binocular rivalry
onset. It also predicts two types of competitive neural
dynamics consistent with rivalry and matches experimental
results, including stimulus conditions for rivalry onset and
the distribution of dominance durations.
The Australian Research Council supported this work.
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