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Excitable cells can exhibit complex patterns of oscillations, such as spiking and bursting. In cardiac
cells, pathological voltage oscillations, called early afterdepolarizations (EADs), have been widely
observed under disease conditions, yet their dynamical mechanisms remain unknown. Here, we show
that EADs are caused by Hopf and homoclinic bifurcations. During period pacing, chaos always occurs at
the transition from no EAD to EADs as the stimulation frequency decreases, providing a distinct
explanation for the irregular EAD behavior frequently observed in experiments.
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Complex oscillatory behaviors, such as spiking and
bursting dynamics in pancreatic B-cells [1], neurons [1-
5], and optical lasers [6], are common phenomena in
excitable systems. These complex dynamics generally
emerge in systems with fast and slow time scales, where
the full system behavior can be described by slow dynam-
ics evolving the fast subsystem through a series of bifur-
cations [1,2]. Cardiac myocytes can exhibit pathological
excitations called early afterdepolarizations (EADs),
which are voltage oscillations during the repolarizing
phase of the action potential (AP). They have been impli-
cated as a cause of lethal cardiac arrhythmias [7-9] and
have been widely investigated in experiments [8,10-12]
and also in simulations [ 13—16]. It is commonly agreed that
EADs occur when inward (depolarizing) currents are in-
creased and/or outward (repolarizing) currents are de-
creased. But many such changes do not produce EADs,
and the general underlying dynamical mechanism still
remains unknown. In single myocytes, EADs typically
occur irregularly [10—12], which is generally attributed to
random fluctuations of the underlying ion channels [13]. In
a recent study [16], we presented evidence from isolated
myocyte experiments and computational simulations that
irregular EAD behavior is not random, but rather dynami-
cal chaos, and gives rise to novel tissue scale dynamics.

EADs have typically been studied in computational
simulations using highly detailed AP models, making dy-
namical analysis difficult [13—16]. In this study, we show
that EADs can occur in a simple AP model, and that
Poincare-Andronov-Hopf (““Hopf””) and homoclinic bifur-
cations in the fast subsystem are responsible for the genesis
of EADs. We also show that due to the homoclinic bifur-
cation, EAD chaos can be readily induced during periodic
pacing, providing a mechanistic explanation for the irregu-
lar EAD dynamics widely observed in cardiac experiments
[10-12].
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Dynamical origin of EADs.—There are typically three
time scales in a normal cardiac AP. The sodium (Na)
current activates very rapidly, causing the fast upstroke
of the AP, and then rapidly inactivates. The L-type calcium
(Ca) current activates and inactivates more slowly than the
Na current, playing a key role in maintaining the long AP
plateau. Time-dependent potassium (K) currents activate
even more slowly and eventually overcome the inward
currents, repolarizing the cell back to the resting potential.
EADs have typically been studied using physiologically
detailed AP models [13-16] which include both detailed
membrane currents and intracellular Ca cycling dynamics.
Although intracellular Ca cycling has been shown to regu-
late EAD behavior through its effects on Ca-sensitive
currents [17], a simple AP model that includes a fast Na
current, an intermediate time-scale Ca current, and a slow
K current, is sufficient to produce EADs. Here, we choose
the Luo and Rudy (LR1) model [18] to uncover the non-
linear dynamics responsible for the formation of EADs,
and to explore their dynamics during periodic stimulation.

The differential equation for membrane voltage V is

C,dV/dt= —[Iy, + Ii + Ix + I,(V)] + Iy, (1)

where C,, = 1 uF/cm?; Iy, is the Na current; I =
G4df(V — Eg) is the Ca current with gating variables d
and f; Ix = Ggxx,(V — Ex) is the time-dependent K cur-
rent with gating variable x, and x; is a voltage-dependent
function. The gating variables satisfy the following type of
equation: dy/dt = [ye(V) — y]/7,(V), where yo,(V) is the
steady state and T},(V) the relaxation time constant of
channel gating, with y standing for the gating variables,
such as d, f, and x, etc. (V) represents all the other
voltage-dependent currents. The detailed formulation of
the LR1 model is available in the original paper [18]. We
set E; = 80 mV and Ex = —77 mV. To study the effects
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FIG. 1 (color online).  Phase diagram of different AP behaviors
obtained by changing y and G;. The system has one fixed point
in the white area but three in the gray area.

of the time constants for the gating variables d, f, and x on
the AP dynamics, we change these time constants by
multiplying them by a scalar factor, i.e., 7,4V)—
aty(V), 7,(V) = B1,(V), and 7,(V) — y7,(V). We refer
to this modified LR1 model as the whole system. Iy in
Eq. (1) is a stimulus pulse of 2 ms duration and
30 wA/cm? amplitude. We solve the differential equations
with a fourth-order Runge-Kutta method and a time step of
0.01 ms.

There are three types of AP morphologies found in the
LR1 model (Fig. 1): normal APs, APs with EADs, and
nonrepolarizing APs (bistable regime), obtained by alter-
ing G (in unit of mS/cm?) and the time constant 7, (by
changing 7y), with other parameters unchanged. The whole
system has only one fixed point (the resting potential)
when Gy is small (white region in Fig. 1) and three fixed
points when it is larger (gray region in Fig. 1). The non-
repolarizing AP behavior does not occur until G > 0.155,
which is maintained by the Ca window current. EADs
occur when the time constant of the K current, vy, is greater
than a certain value. The G range that produces EAD
behavior increases with .

To investigate the underlying dynamics that produces
EADs, we first remove Iy, from Eq. (1). Iy, has little effect
on EADs in the LR1 model, since it is activated mostly
during the upstroke phase of the AP and largely vanishes
during the plateau and the repolarizing phases. We then
follow a standard method for analyzing fast-slow dynamics
[1]: we analyze the bifurcations in the three-variable sys-
tem of (V, d, and f), which we call the fast subsystem, by
setting x as a parameter, since x varies much more slowly
than d and f.

The bifurcation structure of this subsystem can then be
analyzed (Fig. 2). There are three fixed points when x is
small (black lines), but only one when x is large (e.g.,
0.7 <x < 1.0 in Fig. 2). The intersections of the fixed
points of the subsystem with x.,(V) are the fixed points
of the whole system (circles). Linear stability analysis of
the subsystem shows that the lower branch of fixed points
is always stable (the resting potential) and the middle
branch is always unstable (saddle points). The upper
branch can be either stable, or become unstable via a
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FIG. 2 (color). Black lines: the steady states of the three-
variable subsystem versus x (solid: stable; dashed: unstable).
Cyan line: x,(V). Circles: fixed points of the whole system.
Green lines: the maximum and minimum amplitudes of oscil-
lation in the subsystem and the corresponding period 7 (inset),
computed via numerical continuation package AUTO (E. Doedel
et al., http://indy.cs.concordia.ca/auto/). Red line (y = 10): V
versus x from an AP with EADs in the whole system. Red arrows
indicate the time course. Blue line (y = 4): Same as red but with
no EAD. Purple arrow marks the Hopf bifurcation (HB) point,

yellow arrow the homoclinic (HC) bifurcation point. Gg;; = 0.15,
a=0.1,B=1.1.

Hopf bifurcation (purple arrow) leading to limit cycle
oscillations which terminate at a homoclinic bifurcation
point (yellow arrow).

To show how the subsystem dynamics affect the behav-
ior of the whole system, we superimpose on the bifurcation
diagram two representative APs from the whole system,
corresponding to two different values of y (Fig. 2). For the
AP with EADs (red line), the voltage first increases quickly
from —80 to 40 mV with almost no change in x. After
reaching its peak, the voltage decreases towards the upper
branch of the steady state of the subsystem as x increases.
After reaching the steady state of the subsystem, the volt-
age starts to oscillate around the steady state (stable focus)
with dampening amplitude. The amplitude of the oscilla-
tions begins to grow after the Hopf bifurcation point
(purple arrow), and the period extends to infinity (Fig. 2
inset) as x approaches the homoclinic bifurcation point
(yellow arrow). Thus, when the system oscillates beyond
the homoclinic bifurcation point, it repolarizes back to the
resting potential. For the AP without EADs (blue line), x
grows much faster (smaller ), and the whole system is
away from the attracting basin of the subsystem. Therefore,
it repolarizes to the resting potential without oscillations.

Besides the dependence on vy, the occurrence of EADs
also depends on G; and the stability of the fixed point on
the upper branch (grey circle in Fig. 2). When G is small
(white region in Fig. 1), the whole system has only one
fixed point, which is the resting potential. When the entire
upper branch of steady states of the subsystem is stable, the
APs are normal for any <. If Hopf and homoclinic bifur-
cations occur on the upper branch, then EADs occur for
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large y (white area in region 2 of Fig. 1). When G is
larger, the whole system has three fixed points (gray region
in Fig. 1). The stability of the upper fixed point (gray circle
in Fig. 2) determines whether or not the system repolarizes.
If it is unstable (as in Fig. 2), then the AP can always
repolarize; whether EADs occur or not depends on y. If
this fixed point is stable, then the system is bistable. A
stimulated AP cannot repolarize back to the resting poten-
tial (region 3 in Fig. 1).

While the common wisdom that EADs occur when
inward currents overwhelm outward currents is true, the
more rigorous condition involves the time constants and
kinetics of the Ca current (/;), which we can study using an
analytical approach. We evaluate the eigenvalue properties
of the three-variable subsystem, assuming that the time
constants 7, and 7, are fixed. The differential equations
then become dV/dt= F(V,d, f); dd/dt= [d.(V)—
d]/7y4, and df/dt = [f(V) — f1/7;, where F(V, d, f) =
—[Ig + Ix + I,(V)]/C,,, do(V) is a sigmoid function in-
creasing with V, and f (V) is a sigmoid function decreas-
ing with V. The Jacobian for the steady state is

a b c
J=\ si/tqs —1/74 0 , )
_Sf/Tf 0 _1/7'f

where a = 0F/0V, b= 0F/dd, c=0F/df, s;=
0ds/dV, and sy = —9f/dV.b >0, and ¢ > 0 for V <
Eg,and s; > 0 and s, > O for any V. These quantities from
the original LR1 model are shown in Fig. 3(a).

At a Hopf bifurcation point, two of the three eigenvalues
are Aj, = *iw, and the following conditions can be de-
rived from the characteristic equation of the Jacobian,

1 a a s;b
w? = _7_7_L+

’Tde T4 ’Tf T4 Tf

1/1 1
h=—|——a (——a-i—sfc
TrNTS Td

+Tld(7_1d— a)(rlf_ a— sdb) =0. 4

Oscillations occur when & < 0. At the Hopf bifurcation
point, the third eigenvalue A5 is negative so that A;jA, A3 =
det(J) < 0, where det(J) is the determinant of J. Using
det(J) = (a — syc + s4b)/747p, one has s,b — s;c < —a.
According to Fig. 3(a), this relation can be satisfied when
V > =30 mV (upper branch) at which a <0 and s;b —
spe < 0. For a given set of 7y, T and a, Eq. (4) has the
form of A —s,B + s;C = 0, indicating that s, and s
satisfy a linear relation at the Hopf bifurcation point. The
7s-threshold for Hopf bifurcation versus 7, calculated
from Eqgs. (3) and (4) is almost a straight line [Fig. 3(b)].
This is confirmed by results calculated directly from the
subsystem [Fig. 3(c)], where the Hopf bifurcation occurs
on the upper branch of the steady state only above a certain
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FIG. 3 (color online). (a) a, b, ¢, s4, and sy versus V for the
original parameters in the LR1 model. (b) The Hopf bifurcation
point in (74, 7f) space predicted by Eq. (4). a = —0.05, b =
¢ =0.1. Solid line: s; = s; = 0.9; Dashed line: s, = s, =
0.75. (c) The border in the (a, B) space below which no Hopf
bifurcation occurs in the upper branch of the steady state of the
subsystem. G; = 0.1. (d) The EAD region in the (a, 3) space of
the whole system for G; = 0.1. The gray region is a replot of the
“No Hopf” region in (c).

ratio B/ «a. Therefore, the activation and inactivation time
constants and kinetics of the slow inward Ca current need
to be matched properly for the Hopf bifurcation to occur.

To study whether the Hopf bifurcation is necessary for
EADs, a search of the («, 8)-parameter space of the whole
system reveals that EADs occur in the intermediate range
of B/«a, whereas APs without EADs occur when this ratio
is either low or high [Fig. 3(d)]. The upper border (thin
line) moves to higher B/« ratios as 7y increases, but the
lower border [thick line in Fig. 3(d)] does not vary as y
changes. This lower border is always in the («, 8)-region
for which Hopf bifurcation occurs in the subsystem, in-
dicating that the Hopf bifurcation is necessary for EAD
occurrence.

Bifurcation to chaos.—EADs observed in experiments
are typically irregular [10-12], which has been attributed
to purely random fluctuations in the underlying ion chan-
nels [13]. However, the presence of the homoclinic bifur-
cation suggests an alternative explanation: dynamical
chaos. Indeed, chaotic EAD behaviors can always be ob-
served in our system when driven periodically within a
certain range of pacing cycle lengths (PCLs), once the
parameters are properly set for the system to exhibit
EADs. A bifurcation diagram, plotting AP durations
(APDs) versus PCL, shows that at both slow and fast
pacing, the system is periodic, while chaos occurs at inter-
mediate PCLs [Fig. 4(a)]. A sample voltage trace at PCL =
0.907 s, in the chaotic regime, shows irregular EAD be-
havior [Fig. 4(b)]. Note that the bifurcation to chaos is
directly from period 1 at both the short and long PCL
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FIG. 4 (color online). (a) APD vs PCL from the whole system
with y = 2.5. APD is defined as the duration of V > —72 mV.
(b) A voltage trace from a chaotic regime for PCL = 0.907 s.
Sharp spikes are the results of stimulation. The calculated
Lyapunov exponent of this trajectory is 0.38 s™!. (c) V vs x
from the same chaotic recording as in (b). (d) APD vs different
initial x (xy) while keeping the initial conditions of the other
variables the same. (e) Voltage traces for two different x,:
0.31581 (light line) and 0.31580 (dark line), showing the all-
or-none nature of EADs.

regimes. The mechanism of this type of bifurcation was
first shown by Wang [19] and subsequently analyzed by
Shilnikov et al. [3,4] in their neuronal bursting and spiking
models. Since the transition from period 1 to chaos in the
short PCL regime [arrow in Fig. 4(a)] is also the transition
from APs with no EAD to APs with EADs, we can always
observe chaos in our system under periodic pacing, as long
as EADs occur.

To further understand how periodic stimulation induces
chaos in this system, we plot V against x [Fig. 4(c)] for the
same chaotic recording as is shown in Fig. 4(b). Note that
the periodic stimuli (sharp spikes in the trajectory) occur at
very different initial x values for each stimulated AP. We
also plot the APD against different initial x (x;) while
keeping the initial conditions of other variables unchanged
[Fig. 4(d)], showing that the APD increases steeply and
discontinuously at certain critical values of x;. The dis-
continuity occurs at the transitions from no EAD to one
EAD, or one EAD to two EADs, and so on [Fig. 4(d)], as
also shown by the voltage traces with slightly different x,
in Fig. 4(e). The x gate of the K channel recovers slowly so
that it remains at high values during fast pacing. This keeps
the K current large, so there are no EADs, and the system is
periodic. For slow pacing, x fully recovers before the next
stimulus, and so the APs (with multiple EADs) are identi-
cal for each paced beat. In the intermediate range of PCLs,
one can always choose a proper PCL so that the steady
state x at the time of stimulation is in the steep and
discontinuous regime. This makes a small difference in x
result in a large difference in the following APD and in the
number of EADs, generating chaos and other periodic

states. Therefore, chaos and periodic windows can easily
be seen once EADs are present.

Conclusions.—While many studies have described ionic
mechanisms causing EADs, such as failure of complete
inactivation of Iy, [14] or suppression of K currents [8],
this study presents a dynamical mechanism, giving an
overall necessary condition. We show that the dynamical
condition for EADs to occur is that the nonresting steady
state of the voltage/Ca current subsystem loses its stability
via a Hopf bifurcation, leading to oscillations which are
destroyed at a homoclinic bifurcation. The time constants
of activation and inactivation of the Ca current and of
activation of the K current need to be properly matched
to allow the oscillatory behavior to occur. Because of the
homoclinic bifurcation, chaos always accompanies the
appearance of EADs, providing a distinct mechanistic
explanation for the irregular EAD behavior frequently
observed in experiments [10-12]. This is also the basis
for a novel mechanism of arrhythmogenesis by EADs, as
described in our previous studies [16,20]. In addition, our
findings may be applicable to other excitable systems
which exhibit spiking dynamics.
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