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The relaxation in a spin transition compound is modeled on the basis of molecules interacting by the

way of connecting springs and situated in a bidimensional open boundary hexagonal lattice. The switch of

individual molecules is randomly checked using a standard Monte Carlo procedure. The switching

probability depends on the energy gap between the two states in the absence of interactions and on the

elongations of the nearest springs. The main characteristics of the experimental relaxation curves are

reproduced and clustering and nucleation phenomena are detected.
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As a consequence of the foreseeable future limitation of
the recording densities in magnetic media [1], new types of
switchable materials such as molecular magnets are now
being intensely investigated. However, they are generally
affected by strong quantum effects, in conflict with the
deterministic character of recording [2,3].

Other potential recording media of the future are the
spin-crossover solids that can be switched between two
states in thermodynamic competition: the diamagnetic
(LS) low spin state and the paramagnetic high spin (HS)
state, using a range of physical perturbations such as
temperature, pressure or electromagnetic radiation. These
features made them candidates for a fully optical memory
device, triggering an avalanche of studies with remarkable
recent results of compounds that can be switched at room
temperature [4], the production of spin-crossover nano-
particles [5] and the first optical switches between the
two stable states of the material [6]. The transition between
the two states is accompanied by changes in magnetic and
optical properties as well as in the unit cell volume. By
light irradiation using appropriate wavelengths, the LS
ground state at low temperature can be switched to the
metastable HS state. After switching off the light, the
metastable state relaxes back to the stable LS state by a
nonradiative process. The measured output variable of the
system is the proportion of spin-crossover units in the HS
state, denoted here as nHS.

To understand this complex behavior, several theoretical
models have been elaborated in the past, involving short-
and long-range interactions arising from stresses due to the
metal-ligand bond length changes and to the simultaneous
change in volume of the molecules as well as of the whole
crystal during the transition [7]. Ising-like models have
been partially successful in explaining several aspects of
cooperative behavior [8–10]. The elastic interactions are
seen as an internal pressure in these models, and conse-
quently the effective interaction is proportional to the
fraction of molecules in HS state. In contrast, the

DOMINO effect [11] points to local statistically distributed
changes causing a global structural change. Recently, sev-
eral papers proposed elastic models based on a ball and
string concept (i) for a linear chain described by an atom-
phonon coupling model [12], (ii) for two-dimensional
systems using molecular dynamics [13], and (iii) for 3D
systems using Monte Carlo Metropolis methods [14]. In a
recent paper, we simulated hysteresis loops for a system of
molecules in a finite 2D hexagonal lattice connected by
springs and subjected to external pressure [15], thereby
considering distributions of transition temperatures similar
to the Preisach model [16] as suggested by the FORC
diagram method [17].
Here we present a simple model for studying the relaxa-

tion behavior of the metastable HS state at low tempera-
tures and clustering phenomena in open boundary systems.
We consider the spin-active units to be rigid spheres situ-
ated in a hexagonal 2D lattice, in which each unit has six
nearest neighbors and interacts with them by the way of
elastic connecting springs (Fig. 1). As will become evident,
this model offers physical support for both short and long-
range interactions [9]. The spin-active units might be seen
not only as individual molecules, but also in the larger
sense of interacting domains. However, for simplicity, in
the following the term ‘‘spin-active unit’’ will refer essen-
tially to individual molecules.
In the initial state of the system, all the molecules are in

the metastable HS state and no external pressure is applied
to the system. Consequently, all the springs are unstressed
and no local pressure acts on molecules. Then, an external
pressure p, simulated by forces acting on the particles
situated at the edge of the system, is applied to the network.
These forces are taken to be of equal absolute value and
oriented in the direction of the springs connecting the
particle with its neighbors inside the lattice (Fig. 1). The
external pressure produces a compression of all springs in
the systems, until the vector sum of the forces acting on all
molecules becomes zero. This approach ensures that, when
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the system reaches the equilibrium, the local pressure is the
same for all particles:

pi ¼
X

closest springs

k�li þ
X

missing springs

p (1)

with k the spring constant, �li the elongations of the closest
springs (taken positive if compressed, negative if elon-
gated). The second term is considered only for edge
molecules.

The simulation starts by randomly choosing a site in the
system and verifying if it flips from the HS to LS state. The
probability for switching between the HS and LS states
depends on the temperature and the local pressure on a
given molecule in a given state, according to the classical
activation formula presented in [18]:

Pi ¼ k0 exp

�
�E� �pi

T

�
; (2)

where k0 is a preexponential factor, E is the activation
energy in the absence of interactions, which is therefore
the same for all molecules, T is the temperature, pi the
pressure force acting on the ith molecule and � a constant
that establishes to which extent the local pressure influen-
ces the relaxation probability. We calculate the switching
probability using Eq. (2) for every molecule and then
generate a random number, �. If this number is smaller
than the probability, the molecule switches from HS to LS,
otherwise it stays in the HS state. A Monte Carlo time step
is concluded when all molecules in the system have been
interrogated once.

When a molecule switches from HS to LS, the instanta-
neous force acting on it will determine at first the shift in
position of nearest neighbors and then progressively of all
the other molecules. A 2% difference between the diame-
ters of a molecule in the HS state and the LS state was
taken as model value. To find the equilibrium positions for
all molecules in the system, we consider that every mole-
cule has a damped oscillatory-type motion, and we solve
iteratively the following system of coupled differential

equations:

m
d2xi
dt2

¼ Fxi ��
dxi
dt

m
d2yi
dt2

¼ Fyi ��
dyi
dt

(3)

until the maximum change in position of any molecule
between two consecutive steps is smaller than a chosen
parameter (less than 0.1%).
The following notations have been used: xi, yi are the

Cartesian coordinates of molecule i, � is the damping
constant, and Fxi, Fyi are the algebraic sums of forces

acting on particle i in the two directions, given by

Fxi ¼
X

all

k�lx;i þ px; Fyi ¼
X

all

k�ly;i þ py (4)

with �lx;i, �ly;i the components of elongation of every

spring around the particle and px, py the external pressures

forces on the two axes, taken into account only for edge
particles. The system of equations is solved using the
Gear’s BDF method [19]. To simulate the full relaxation
curve, the above procedure is continued until all the mole-
cules have switched to the LS state.
In the simulations below, we have used hexagonal net-

works (Fig. 1) with 2791 molecules (30 molecules on each
side of the hexagon). In contrast to rectangular lattices
[13,14], the hexagonal lattice is inherently stable even
with only nearest neighbor interactions, thus keeping the
number of parameters at a minimum. There are several
examples of spin-crossover compounds with hexagonal
sheet layers [20].
We have simulated relaxation curves at various tempera-

tures and different external pressures, assuming the elastic
constants to be independent on these parameters in analogy
to previous studies [21] [Fig. 2(b)]. The relaxation curves
show the typical sigmoidal shape for a cooperative process
[18], where the energy barrier progressively decreases
while the relaxation proceeds. As in the thermally activated
regime of real spin-crossover complexes, the relaxation is
faster at higher temperature and for increasing pressures.
The simulations have also clarified a very complex

phenomenon, essential in crystalline spin-crossover com-
pounds—the cooperativity. To explain it, some authors
claim that the elastic constant depends on the spin state

(a) (b)

FIG. 2 (color online). Dependence of relaxation time on pres-
sure and temperature (a); and on interaction strength (b). The
following model values were used: E ¼ 450 K, k ¼ 1 N=m,
� ¼ 0:5 N � s=m, k0 ¼ 1.

FIG. 1 (color online). The hexagonal network of particles
connected with springs.
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[12] or temperature. Also, two different elastic constants
for nearest neighbors and next nearest diagonal neighbors
in square and cubic lattices had to be considered by other
authors [13,14] to stabilize the square latices. In our model,
we have used the same elastic constant for all the mole-
cules in both spin states, and we still can reproduce the
main experimental results.

In real systems, cooperativity is due to the large differ-
ence in metal-ligand bond lengths, and to corresponding
differences in unit cell volumes between the two spin
states. In our system when a molecule changes its state,
the local distortions affect not only the nearest neighbors,
but are causing an effective long-range interaction between
all molecules in the system. In Fig. 3 we present two
snapshots of the same system at two different moments
during relaxation. We notice that for a small fraction of LS
molecules (left panel), there are still a lot of HS molecules
subjected to a constant or only weakly varying pressure.
However, for a higher fraction of LS molecules (right
panel) the pressure acting on them increases, in particular,
in the vicinity of the LS molecules. According to Eq. (2),
these molecules have a bigger probability to switch to the
LS state than at the beginning of the relaxation process.
Cooperative effects manifest themselves in cluster forma-
tion inside the lattice as the relaxation proceeds leading to
the conclusion that the number of particles switching
within a given time interval increases as more molecules
populate the LS state.

An additional interesting aspect is the influence of the
interaction strength on the relaxation curves. Interaction
strength can be modified by changing the parameters � or k
with similar results. For weak interactions, as in the case of
diluted crystals, the relaxation is single exponential. In
strongly interacting systems, the relaxation curves become
self-accelerated and increasingly steeper. This evolution is
displayed in Fig. 2(b) for a fixed value of the relaxation rate
constant at the beginning of the relaxation. As the interac-

tion becomes stronger, the relaxation time decreases due to
the cluster formation. Actually, for different interaction
strengths the systems relax in rather different regimes. As
expected, in the absence of interactions, the molecules pass
from HS to LS independently of each other. For moderate
values of the spring constant, some clusters form, but on
average the HS and LS molecules are distributed randomly
in the sample during the relaxation process [Fig. 4(a)]. This
situation resembles the case where the elastic interactions
are only of long-range nature. However, even for moderate
interactions the buildup of correlations results in deviations
from mean field behavior, in accordance with several ex-
perimental observations. If the spring constant is high
enough then the clusters are bigger and develop faster
throughout the sample, starting from edge or corner and
leading to fluctuations, nucleation and growth phenomena.
An infinite avalanche phenomenon [22] can be defined in
such a case: when several molecules change their states,
they will trigger their neighbors to flip resulting in a
discontinuous jump in the HS fraction. Such a situation
leads to nonrandom distributions of HS and LS molecules.
[Fig. 4(b)]. In this case the deformations of the crystal are
bigger and may lead to its collapse. Reference [20] pro-
vides an illustrative example of relaxation curves with a
shape typical for a nucleation and growth mechanism and
the formation of domains. Previously, domains have been
experimentally observed during the thermal transition or
photoexcitation [23]; a very recent study by optical mi-
croscopy at cryogenic temperatures shows that domains
most often grow starting from a corner and present an
evolution similar to our simulations [24]. Further experi-
mental proofs could possibly be gained by elastic neutron
or x-ray scattering experiments. We have tried to simulate
the relaxation curves corresponding to two situations de-

FIG. 3 (color online). Snapshots of a system with moderate
interaction (� ¼ 2000 K=N) strength during relaxation. Open
circles correspond to LS molecules; full circles correspond to HS
molecules and are color coded according to the pressure acting
on them: red circles indicate molecules with approximately the
same pressure as at the beginning, molecules with a lower or
higher pressure acting on them are indicated by yellow and black
circles, respectively.

FIG. 4 (color online). Snapshots of spin configurations when
around 10% of molecules are in the LS state showing the
difference between the behavior observed for weak, � ¼ 1000
(a) and strong, � ¼ 3000 (b) interactions. Calculated relaxation
curves and best fit with the classical mean field model (c) and
(d). Yellow circles correspond to LS sites, black circles to HS
sites.
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scribed using the macroscopic classical mean field model,
where the internal pressure effect is taken into account by
the way of the self-acceleration parameter � [25,26]. If
the relaxation curves obtained for the weak interaction
system can be easily simulated with a reasonable � value
[Fig. 4(c)], this is not possible in the case of nucleation and
avalanche phenomena [Fig. 4(d)].

Because our system does not rely on periodic boundary
conditions, it is important to establish how much sample
size influences the relaxation curves. Besides size effects,
spatial fluctuations, not considered in the mean field equa-
tion, can lead to notable deviation of the relaxation curves
from an average curve [27]. To study these finite size
effects, we have calculated for the same system and under
the same conditions, several relaxation curves, with differ-
ent randomizations (various � random numbers). The dis-
tributions of relaxation times are presented in the inset of
Fig. 5 for different system sizes. They are close to
Gaussian, conform to the central limit theorem [28]. The
width of the distribution tends to widen as the number of
molecules decreases which suggests that the way cluster
formation takes place inside the lattice influences the
evolution of small systems. As the number of molecules
increases, clustering becomes a statistical phenomenon,
which leads to smaller fluctuations of the total switching
time. Another representation of this variation is plotted in
main Fig. 5.

In conclusion, we have modeled the HS ! LS relaxa-
tion in a 2D hexagonal spin-crossover system by numerical
simulation within the framework of an elastic model con-

sidering distortions determined by the volume change dur-
ing the passage from HS to LS. We have considered only
very simple assumptions, namely, a single elastic interac-
tion constant between nearest neighbors. Nevertheless, all
the typically observed phenomena in spin transition crys-
tals can be simulated. In particular, the universal character-
istics of nucleation and growth phenomena, shown to be
determined by boundary effects, and the different regimes
can be described within a unified model. The key of the
present model lies in the inherent geometrical stability of
the hexagonal lattice. This aspect should be taken over for
instance in a future 3D model.
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FIG. 5 (color online). First part of 1000 relaxation curves for a
system with 1291 molecules (top) and 10 981 molecules (bot-
tom). Darker parts indicate more relaxation curves in respective
regions. Inset: distributions of relaxation times for different
systems.
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