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I show that recent experiments of inelastic scanning tunneling spectroscopy of single and a few

magnetic atoms are modeled with a phenomenological spin-assisted tunneling Hamiltonian so that the

inelastic dI=dV line shape is related to the spin spectral weight of the magnetic atom. This accounts for

the spin selection rules and dI=dV spectra observed experimentally for single Fe and Mn atoms deposited

on Cu2N. In the case of chains of Mn atoms it is found necessary to include both first and second-neighbor

exchange interactions as well as single-ion anisotropy.
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Electron tunneling is one of the central themes in con-
densed matter physics. It lies behind fundamental phe-
nomena like the Josephson effect [1] and tunneling
magnetoresistance [2], and provides an extremely versatile
spectroscopic tool, both in tunneling junction [3,4] and
STM geometries [5]. The use of inelastic electron tunnel-
ing to determine the vibration spectra of ensembles of
molecules inside tunnel barriers goes back to the seminal
work of Jaklevik and Lambe [3]. They observed steps in
the differential conductance dI=dV curve at particular
values of the bias voltages which matched the vibrational
energy spectra of different molecules. This led to the
notion of inelastic assisted tunneling [3,6]: an electron
could tunnel across the barrier giving away its excess
energy eV to create an elementary excitation. In this frame-
work, as eV increases, new inelastic transport channels
open, resulting in steps in the dI=dV curve.

With the advent of the STM, it has been possible to
downscale the technique of inelastic tunneling vibrational
spectroscopy to the single molecule level [7], a possibility
anticipated in the early days of STM [8]. In a series of
striking experiments [9–12] Heinrich et al. have used
inelastic STM spectroscopy to probe the spin-flip excita-
tions of a single and a few transition metal atoms in a
surface by means of STM spectroscopy (STS). They have
measured the single-Mn-atom Zeeman gap [9,11], the
collective spin excitations of chains of up to 10 Mn atoms
[10] and the spin-flip transitions within the ground state
manifold of a single iron, cobalt, and Ti atom, split due to
the single-atom magnetic anisotropy [11,12]. Analogously,
inelastic STM spectroscopy has been used to probe the spin
excitations of both Co and Fe Phthalocyanines [13,14].
Inelastic STS complements spin-polarized STS [15] which
is sensitive to the average relative orientation of the mag-
netic moments of tip and surface ( ~mT and ~mS respectively).

In contrast to the case of vibrational spectroscopy [6],
the physical origin of coupling between the transport elec-
trons and the local spins which makes SITS possible is not
clear [16]. Hirjibehendin et al. mention two possibilities
[11], exchange or dipolar coupling, although the former
encompasses a variety of different mechanisms, like direct,

kinetic, etc. The coupling must account for a number of
experimental observations. The height of the steps in the
dI=dV scales like the sum of the squares of the matrix
elements between the initial and final states of the opera-
tors Sa with a ¼ x, y, z, the spin of the atom probed by the
SITS [11]. This is related to the selection rule for the
change of the spin of the local spin �Sz ¼ �1, 0 [10,13].
Therefore, there is a relation between the inelastic current
and the spin spectral weight Saað!Þ of the magnetic atom
(s). In this Letter I show that an effective spin-assisted
tunneling Hamiltonian naturally explains the relation be-
tween the inelastic current and the spin spectral weight
Saað!Þ and accounts for the main experimental findings.
The theory is used to analyze in detail the observed spectra
of single Fe and Mn atoms and Mn chains.
The experimental system consists of an insulating thin

layer deposited on a metallic surface. Magnetic atoms lie in
the insulating layer and are probed by a STM. A natural
model for this system would thus feature 3 types of fermion
operators, tip, surface and insulating layer, plus the spin
operator of the magnetic atoms. In such an approach, the
current, evaluated to lowest order in the tunneling cou-
pling, is related to the spectral function of the transport
electron in the insulating layer interacting with the local
spins [17]. This is different from the experimental findings
described above. Thus, within the three-fermion approach
the low bias steps found experimentally must arise from
higher order cotunneling processes [18]. Here I adopt a
simpler approach using a phenomenological Hamiltonian
with two types of electrons (tip and surface), with an
effective spin-flip-assisted tunneling term [19]:

H ¼ H tip þH sur þH S þH tun: (1)

The first three terms describe the electrons in the tip

(H tip ¼
P

k;��ka
y
k�ak�) and in the surface (H sur ¼P

p;��kb
y
p�bp�). The Hamiltonian of the central spin(s) is

the sum of the interatomic H 0SðiÞ and interatomic terms

H S¼
P

iH 0SðiÞþ
P

i�j;ajabði;jÞŜaðiÞ � ŜbðjÞ. The eigen-

energies and eigenstates of H S are denoted by EM and
jMi. Within this approach the tunneling terms read [19,20]:
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H tun ¼
X

��0�;i
T�ðkk0; iÞ

����0

2
Ŝ�ðiÞðayk�bk0�0 þ H:c:Þ; (2)

where �� and Ŝ�ðiÞ are the Pauli matrices and the spin
operators of the atom i in the central region for� ¼ a ¼ x,
y, z, and the unit matrix for � ¼ 0. Because of the short-
range nature of exchange interaction and tunneling pro-
cesses from the tip in most instances there is a dominant
T�ðkk0; iÞ for the magnetic atom i underneath the tip. Terms
with � � 0 describe a Kondo-like exchange of the local
spins with a conduction electron that scatters between the
tip and surface. Unlike a conventional tunnel, this is a four
fermion term. In the case of the Anderson model, this
exchange assisted tunneling is antiferromagnetic (AFM)
and arises naturally from a second-order cotunneling pro-
cess [21]. The AFM nature of the coupling is supported by
the observation of the Kondo effect in the case of Co
adatoms [12].

Equation (2) describes both spin-assisted (� ¼ x, y, z)
and conventional tunneling � ¼ 0. To lowest order in
H tun, the current has three contributions: (i) a central-
spin independent T2

0 , (ii) crossed contributions propor-

tional to T0Ta ~mT;S � h ~Sð1Þi, and (iii) a spin-flip contribution
T2
a that features the spin spectral weight and is responsible

of the steps in the dI=dV curves. In the case of the
magnetized tip and sample the T2

0 contribution depends

on ~mT � ~mS which makes possible the SP-STS spectros-
copy [15,22]. In this work ~mS ¼ ~mT ¼ 0. In the absence of
atomic spin coherence, the spin-flip contribution reads [19]

I ¼ X
M

PM

�X
p;�

nTp�
T!S
p;M �X

k;�

nSk�
S!T
k;M

�
; (3)

where PM is the (nonequilibrium) occupation of the M

state, nT;Sp is the occupation function of the tip and surface
and � is the tunneling rates associated to the spin-flip-
assisted tunneling Hamiltonian:

�T!S
p;M ¼ X

p0;M0;a
jhMjX

i

Taðpp0; iÞŜaðiÞjM0ij2

� ð1� nS
p0 Þ�ð�p0 þ �M0 � �p � �MÞ: (4)

This expression gives the lifetime of a product state with an
electron in the state p of the tip and the magnetic atom(s) in
stateM due to a spin-flip-assisted tunneling of the electron
to the surface. Importantly, in the case of a single central
spin this equation relates current to the spin matrix ele-
ments, jhMjSajM0ij2 � jSaM;M0 j2, as reported in the experi-

ments [10,11,13].
If the coupling between transport electrons and spins is

rotationally invariant, TaðiÞ ¼ TSðkk0Þ�ðiÞ is the same for
a ¼ x, y, and z. Here �ðiÞ is a dimensionless number that
accounts for the different tunneling probability through
different atoms in the chain. The dependence of TSðkkÞ
on the momentum indexes can be neglected. We take
nTð�Þ ¼ fð�Þ and nSð�Þ ¼ fð�þ eVÞ, where f is the
Fermi function. The sum over momenta leads to an integral
over energies featuring the density of states of tip and
surface, �Tð�Þ and �Sð�Þ which are assumed to be flat in
the neighborhood of the Fermi energy. I define eGS �
T2
S�Tð�FÞ�Sð�FÞ, and Fð�;�0;!Þ¼ ½fð�Þð1�fð�0 þ!ÞÞ�

fð�þ!Þð1�fð�0ÞÞ� so that the current reads

I ¼ GS

X
i;i0;a¼x;y;z

Z 1

�1

Z 1

�1
Saað�� �0ÞFð�; �0; eVÞd�d�0;

(5)

where

S aað!Þ � X
M;M0

PMjhMjS�jM0ij2�ð!� �M0;MÞ; (6)

where S� � P
i�ðiÞS�ðiÞ and �M0;M � �M0 � �M. For a

single spin S� ¼ S�. The quantity Saað!Þ is dubbed spin
spectral weight in analogy with the dipole spectral weight
[6]. After two integrations the total inelastic current is thus
written as

I ¼ X
M;M0;a;s¼�

PMjhMjS�jM0ij2 eV � s�

1� e�s	ðeV�s�Þ : (7)

Equations (5) and (7) are the magnetic analog of the vibra-
tional inelastic tunneling spectroscopy [6] in which the
dipole spectral weight of the molecular vibrations is re-
placed by the spin spectral weight of the magnetic atoms.
From the formal point of view, Eq. (5) is one of the main

results of this Letter. It relates the inelastic current to the
spin spectral weight of the magnetic atom(s) probed by the
STM. Equation (5) shows that two types of spin-assisted
tunneling processes contribute to the current. If we choose
z as the quantization axis, the a ¼ x, y terms involve spin
exchange between the transport electron and the magnetic
atom. These are the spin-flip terms. In contrast, the a ¼ z
term conserves the spin of both carrier and atom.
Now the validity of Eqs. (5) and (7) and thereby that of

the spin-assisted tunneling term (2) is verified by compar-
ing their predictions with the experimental results. To do

FIG. 1 (color online). (a) Differential conductance for single
Fe atom with magnetic field along the z axis. (b) The same with
magnetic field along the x axis. (c) Scheme of the B ¼ 0 energy
levels of Eq. (8) and the tunneling induced transitions.
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so, spin model Hamiltonians H S and their eigenstates are
needed. For simplicity I approximate PM by an equilibrium
distribution, independent of voltage. The case of tunneling
through a single Fe atom in Cu2N-Cu system [11] is
considered first. Following that reference, the standard
single-spin Hamiltonian reads

H S ¼ DŜ2z þ EðŜ2x � Ŝ2yÞ þ g
B
~B � ~S (8)

with S ¼ 2 adequate for Fe2þ and D ¼ �1:55 meV and
E ¼ 0:35 meV [11]. The ground (first excited) state is
made mainly (only) with Mz ¼ �2. The dI=dV curves
obtained from Eq. (7) and the exact solution of
Hamiltonian (8) for different intensities and orientations
of the applied magnetic field, evaluated for kBT ¼ 0:5 K,
are shown in Figs. 1(a) and 1(b). The a (b) panel corre-
sponds to field parallel to z (x). At zero field the dI=dV
curves shows three steps corresponding to the excitations
to the first, second and third excited states. The transition to
the fourth state is forbidden (

P
a¼x;y;zjh0jSaj4ij2 ¼ 0). The

prominent 0 ! 1 transition comes from the spin-
conserving channel a ¼ z, where as the 0 ! 2 and 0 ! 3
transitions come from the spin-flip channels a ¼ y and
a ¼ x, respectively (see Fig. 1(c)). The evolution of the
dI=dV curves as a function of the intensity and orientation

of ~B give good account of the main observed experimental
features [11].

The theory also accounts for more complicated experi-
mental situations where electrons tunnel through one mag-
netic atom which is exchanged coupled to others. This is
the case of linear chains of N Mn atoms deposited on a

Cu2N-Cu surface, N going from 1 to 10. The dI=dV curves
of the chains showed marked even-odd N effects ac-
counted for by a first-neighbor AFM Heisenberg coupling
[10]. However, this model can not account for the small
bias dip observed for oddN chains, the zero field splitting
of the first step in the N ¼ 2 chain and the redshift of the
step at 17 meV in theN ¼ 3 chain. Here I extend the first-
neighbor Heisenberg model without single-ion terms used
by Hirjibehedin [10] et al. in two ways. First, the single-ion
magnetic anisotropy, found by Hirjibehedin et al. for Mn
on Cu2N [11], is included in the Hamiltonian of the chain.
Second, in the case of the trimer, the second-neighbor
coupling must be included to account for the experimental
data. Thus, the model reads

H S ¼
X
i

H SðiÞ þ
X
i;j

Jij ~SðiÞ � ~SðjÞ; (9)

where the sum in the last term runs over i � j. This
Hamiltonian is diagonalized numerically. Figure 2(a)
shows a summary of the dI=dV curves for monomers,
dimers, trimers, and tetramers in good agreement with
experiment [10]. According to experiments [10] the
single-ion anisotropy term for Mn2þ on top of Cu is D ¼
�0:039 meV. It is possible to account for the fine structure
of the dimer and the trimer keeping the same value for all
the atoms in the chain. The values of the first-neighbor
exchange coupling constants are at least 10 times larger
and positive (AFM). Thus, to a very good approximation
we can label the eigenstates of (9) with S and Sz, total spin
S and a projection along the z axis, taken perpendicular to
the surface in this case.
The ground state and first excited states of the dimer

have spin S ¼ 0 and S ¼ 1, respectively. Both in this set of
experiments [10] and in the calculations below, a magnetic
field is applied in the plane, at 55 degrees of the x axis in
which the dimer lies, splitting the states of the S ¼ 1
triplet. Three steps are resolved at finite field, correspond-
ing to the three transitions S ¼ 0 ! ðS ¼ 1; SZ ¼ �1; 0Þ.
At large fields the observed [10] energies satisfy
�ðSz; BÞ ¼ �0ðSzÞ þ g
BSzB. Importantly, �0ðSz ¼
�1Þ ¼ 5:83� 0:05 meV, different from �0ðSz ¼ 0Þ ¼
5:96� 0:05 meV, g ¼ 2:1. This zero field splitting cannot
be accounted for by the Heisenberg model, for which the
zero field excitation energy is independent of Sz and equal
to �1;0 ¼ J. In Fig. 2(b) I show the evolution of the dI=dV
curves and the excitation energies �1;0ðSzÞ as a function of
B, using Hamiltonian (9). For large values of B, the exci-
tation energies can be fitted with straight lines.
Extrapolation of the high field simulation to zero field
yield �0ðSz ¼ þ1Þ ¼ 5:83 meV, �0ðSz ¼ �1Þ ¼
5:86 meV and �0ðS2z ¼ 0Þ ¼ 5:94, in agreement with
the experiment within the experimental error bar. Notice,
however, that at low field, for which there is no published
data, the curves are no longer linear due to the competi-
tion between the applied field and magnetic anisotropy
[Fig. 2(c)]. The only free parameter in this calculation is
J ¼ 5:88 meV.
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FIG. 2 (color online). (a) dI=dV for B ¼ 0, kBT ¼ 0:6 K for
chains of N Mn atoms, N ¼ 1, 2, 3, 4. Solid circles represent
the atom underneath the tip. (b) Evolution of the dI=dV for
N ¼ 2 for 3 values of B. (c) Evolution of the corresponding
excitations. (d) Evolution of the dI=dV for N ¼ 3 for 3 values
of B. In all the cases ~B lies in plane, 55

�
from the chain.
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The experimental data for the trimer shows a first step
below 1 meV, and a second step at 17.5 meV. The position
of the second step shifts towards low energy as a magnetic
field is applied. Neither of these two results can be ac-
counted for by a first-neighbor AFM Heisenberg model for
which the ground state has S ¼ 5=2 and the first two
excited manifolds have S ¼ 3=2 and S ¼ 7=2 with excita-
tion energies �3=2;5=2 ¼ 2:5J and �7=2;5=2 ¼ 2:5J. Taking
J ¼ 5:88 meV from the dimer, �5=2;3=2 ¼ 14:7 meV and

�5=2;7=2 ¼ 20:58 meV. The addition of single-ion anisot-

ropy splits the 6 states of the S ¼ 5=2 manifold in 3
doublets, according to E ¼ 1:65D3S

2
z , with D3 ¼ 1:65D.

Since D3 < 0, the trimer behaves like a S ¼ 5=2 nano-
magnet with spin Sz ¼ �5=2 as the ground state. The
anisotropy barrier is given by 6D3 ’ 4 K. Internal transi-
tions within the Sz ¼ �5=2 ground state and the Sz ¼
�3=2 excited states of the S ¼ 5=2 manifold account for
the low bias dip and its evolution as a function of the
applied field B [see Fig. 2(d)].

In order to account for the 17.5 meV structure it is not
enough to invoke a reduction of the first-neighbor coupling
J due to small changes in the crystal environment, because
the observed redshift of the 17.5 meV structure can only be
possible for a transition from the S ¼ 5=2 ground to the
S ¼ 7=2 state. Thus, it is necessary to go beyond the first
neighbor Heisenberg model. A natural option is to consider
second neighbor coupling J2, that could arise from RKKY
coupling, and could either ferromagnetic (FM) or AFM,
and is presumably smaller than J. Using a FM J13, �7=2;5=2

turns out to be independent of J13 whereas �3=2;5=2 ¼
3:5J þ 5jJ13j. Thus, when �5J13 > J the transition to
the 7=2 manifold becomes the first excited state (out-
side the S ¼ 5=2 anisotropy split manifold). Thus, the
position of the step and its redshift can be modeled taking
J ¼ J1;2 ¼ J2;3 ¼ 5 meV and J2 � J1;3 ¼ �1:3 meV
[Fig. 2(d)]. Additionally, the amplitude of the dI=dV step
associated to the �7=2;5=2 transition is always finite, regard-

less of which atom is below the tip, in contrast with the step
associated to �3=2;5=2, which is forbidden for the central

atom [Fig. 2(a)]. Thus, the spin-assisted tunneling spec-
troscopy can be used to map the wave function of the spin
excitations.

Finally, I consider how the second-neighbor coupling
affects the tetramer, which was properly described with the
simpler J2 ¼ 0 model [10]. The AFM J coupling together
with a weak FM J2 yield a ground state with S ¼ 0. The
first excited state has S ¼ 1 and energy approximately
given by �5=2;3=2 ¼ 0:47J þ 0:43jJ2j, for J � �J2 and

J2 < 0. Inspection of the experimental data [10] yields an
approximate excitation energy of 2.4 meV. Taking the
values for J and J2 from the trimer �5=2;3=2 ¼ 2:56 meV.
Thus, second-neighbor coupling is necessary to describe
the trimer and compatible with the observations of the
tetramer.

In conclusion, I show that the spin-assisted tunneling
mechanism [19,21] that couples electrons in the tip and the

surface to the local spin (2) accounts for the single-spin
inelastic tunneling spectroscopy experiments [9–14]. This
mechanism naturally leads to an expression for the current
that involves the spin spectral weight Saað!Þ of the mag-
netic atom below the tip and to the spin selection rules
observed experimentally [10,13]. Single-ion anisotropy,
AFM first-neighbor, and FM second-neighbor coupling
are necessary to model the spectra of Mn chains on
Cu2N. The Mn trimer is portrayed as a nanomagnet with
spin S ¼ 5=2, ground state Sz ¼ �5=2 and anisotropy
barrier of 4 K.
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Note added.—Recently, other work with related results

has been posted [23].
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