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The thermal conductivity �ðTÞ of Si nanostructures containing impurities is calculated from first-

principles using nonequilibrium molecular dynamics simulations in thermally ‘‘prepared’’ periodic

supercells. For a given concentration of impurities, � exhibits strongly nonlinear variations with the

mass of the impurity. There is a narrow range of conditions for which � is substantially reduced relative to

that of the pure material. This suggests that the � of nanowire could be controlled with impurities and that

nanoregions with a desired � could be implanted on chips.
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The mechanical, electrical, optical, and magnetic prop-
erties of semiconductors are controlled by the type and
concentration of impurities they contain. For example, the
electrical conductivity of Si can be changed by over 8
orders of magnitude with B doping [1,2]. No systematic
study of the impact of impurities on the thermal conduc-
tivity �ðTÞ of semiconductors is available.

Measurements in c-C [3], Si [4] and Ge [5] show that �
increases by about an order of magnitude by isotopic
purification. In other words, the inclusion of isotopes (im-
purities) into pure crystals substantially decreases �. For
example, 1.1 at.% of 13C ‘‘impurities’’ in otherwise pure
12C decreases � by about a factor 10. Is this the maximum
that can be achieved? Is the mass of precisely 13 in
precisely 1.1 at.% concentration the combination that
achieves the maximum possible reduction in �? Could
different impurity masses, types, and/or concentrations
have a greater impact?

Puzzling thermal conductivity data have been reported
in alloys. Figure 2 in Ref. [6] shows the measured
�ð300 KÞ of InxGa1�xN, AlxGa1�xN, and InxAl1�xN vs
x. In InxGa1�xN and AlxGa1�xN, � decreases by about 1
order of magnitude as x varies from 0.2 to 0.4. But in
InxAl1�xN, it increases under the same conditions. If the
minority element act as an impurity, then increasing x
should increase impurity scattering, and then � should
always decrease with x. But it does not.

Recent calculations [7,8] of thermal conductivities in-
volve equilibrium molecular dynamics (MD) simulations.
They are based on the Green-Kubo formulation of the
fluctuation-dissipation theorem and are normally applied
to isotropic systems. The key step is the evaluation of
transport coefficients L�� ¼ L��, defined [8] in terms of

correlation functions of the microscopic fluxes of charge
(q) and heat (h). If �, � stand for q or h, L�� ¼ 1

3� �R1
0 hJ�ðtÞJ�ð0Þidt, where� is the volume of the system, hi

is the average in thermal equilibrium, and ~Jq ¼ P
iZie ~vi

and ~Jh ¼ d
dt

P
iEi ~ri, where Zie, ~vi, Ei, and ~ri are the

nuclear charge, velocity, energy, and position of atom i,

respectively. Once the three L�� coefficients are known,

one obtains the electrical conductivity, thermopower and
thermal conductivity. The latter is � ¼ ðLqqLhh �
L2
qhÞ=LqqkBT

2.

The correlation functions L�� converge with difficulty

and require simulations lasting hundreds of ps, with time
steps of the order of the fs. Thus, empirical potentials have
always been used. A first-principles approach is needed
when dealing with impurities [9].
The Green-Kubo approach has been used to calculate �

in Si [10] and its frequency-dependence [11], in Si=Ge
superlattices [12], and in Ge [13]. Semiempirical nonequi-
librium MD (NEMD) have also been used to calculate � in
C nanotubes [14], in Si nanowires [15], and in solid argon
[16]. Because of the large temperature fluctuations, large
temperature gradients �T are needed: 50 and 1000 K in
[14]; 66 and 246 K in [16].
We propose here a NEMD approach in ‘‘prepared’’

supercells to calculate �ðTÞ from first principles in periodic
supercells containing impurities. The calculations are in-
spired by experiment: One end of a sample (x ¼ 0) is
heated with an energy pulse, the heat propagates through
the material, and the temperature is recorded at the oppo-
site end (x ¼ L) as a function of time. The S-shaped plot of
Tðx; tÞ is fit to an equation which contains the thermal
diffusivity �, from which the thermal conductivity � is
obtained [17].
We follow the same idea with first-principles theory [9].

We start with a cell repeated N times in one direction of
space, producing a N-cells supercell, to which periodic
boundary conditions are applied. Since our cells are
aligned along h100i, our � is �h100i.
The key ingredient in the present calculations is the

supercell preparation in thermal equilibrium at t ¼ 0.
This minimizes the T fluctuations, allows us to use small
�T’s, and remain close to thermal equilibrium. The first
cell is prepared in thermal equilibrium at the ‘‘hot’’ tem-
perature Th. The other N � 1 cells are prepared in thermal
equilibrium at the ‘‘cold’’ temperature Tc. The hot cell is
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appended to the cold cells, and the system is allowed to
evolve toward equilibrium. The final temperature is Tf ¼
fTh þ ðN � 1ÞTcg=N. We monitor the temperature Tðx; tÞ
in the middle cells (Fig. 1) and fit it to the same function
used by experimentalists [17]. Adapted to the present
configuration, this is

Tðx; tÞ ¼ Tc þ ðTf � TcÞ
X
n

ð�1Þn expf�n2�2�t=x2g

and then � ¼ ��C, where � is the density of the material
and C the specific heat at the appropriate temperature. Our
sum runs from n ¼ 0 to n ¼ 10.

Our calculations include quantum corrections [12] to T
and �. These are important below the Debye temperature.
However, the functional form we use to fit Tðx; tÞ assumes
Fourier’s law. This becomes increasingly incorrect as one
moves farther away from equilibrium and uses nanoscale
systems. The correct heat transfer equation [14,18] in-
volves two unknown relaxation times (for momentum-
conserving and umklapp scattering processes, respec-
tively). We ignore this complication for the following
reasons. First, we use small �T’s and remain close to
equilibrium, where deviations from Fourier law are small.
Second, we investigate how much � changes with impuri-
ties for a fixed �T. The systematic error associated with
the absolute value of � cancel out. Third, since we are
using first-principles theory, we are limited to supercells
smaller than the Si nanowires measured to date: there are
no data to which we can directly compare our results.
However, the results of all our tests are consistent with
known data: the increase in � caused by isotopic purity, the
reduction in � with the cross sectional area of the nanowire
or supercell and the higher temperature at which � is
maximum, compared to the bulk.

The electronic structure calculations and ab initio MD
simulations are done with SIESTA [19,20]. Norm-
conserving pseudopotentials in the Kleinman-Bylander
form [21] describe the core regions. The valence regions
are treated within first-principles local density-functional
theory with the exchange-correlation potential of
Ceperley-Alder [22] parameterized by Perdew-Zunger
[23]. The basis sets for the valence states are linear combi-
nations of numerical atomic orbitals [24]. We use double-

zeta basis sets (two sets of s and p orbitals for each Si
valence state). The charge density is projected on a real-
space grid with equivalent cutoffs of 150 Ry to calculate
the exchange-correlation and Hartree potentials.
Once the geometry of the system is optimized with

maximum force component Fmax < 0:001 eV= �A, the dy-
namical matrix is calculated. Its eigenvalues are the
normal-mode frequencies!s. Its orthonormal eigenvectors
es�i are used to transform the (harmonic) normal-mode
coordinates qs ¼ AsðTÞ cosð!stþ ’sÞ into Cartesian nu-
clear displacements (� numbers the nuclei, i ¼ x, y, z):

r�i ¼ 1ffiffiffiffiffiffiffi
m�

p
X
s

qse
s
�i:

The unknown normal-mode amplitudes As are obtained by
requiring that, in thermal equilibrium, the average kinetic
energy of each mode is kBT=2, that is�
1

2
_q2s

�
¼

�
1

2
!2

sA
2
ssin

2ð!stþ ’sÞ
�
¼ 1

4
!2

shA2
si ¼ 1

2
kBT:

If As ¼ hAsi, each mode has the energy kBT. Instead, we

use a random distribution �s ¼
REs

0 fe�E=kBT=kBTgdE with

0< �s < 1. Thus, As ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2kBT lnð1� �sÞ

p
=!s leads to a

distribution of normal-mode energies which averages out
to kBT.
Thus, in thermal equilibrium at the temperature T, the

Cartesian positions of the nuclei are

r�i ¼
ffiffiffiffiffiffiffiffiffiffiffi
2kBT

m�

s X
s

1

!s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnð1� �sÞ

q
cosð!stþ ’sÞes�i:

The initial nuclear positions and velocities in thermal
equilibrium are r�iðt ¼ 0Þ and v�iðt ¼ 0Þ ¼ _r�iðt ¼ 0Þ,
with random phases 0 � ’s < 2�. This supercell prepara-
tion for NEMD simulations has been tested in calculations
of the T-dependence of vibrational lifetimes [25].
After supercell preparation (1 cell at Th, 11 cells at Tc),

MD simulations are performed without thermostat with a
time step�t ¼ 2:0 fs. A plot of Tðx; tÞ in the 7th of 12 cells
of the 28Si192 supercell after one run and averaged over 10

and 20 runs, respectively, is shown in Fig. 2 with Th ¼
180 K, Tc ¼ 120 K (Tf ¼ 125 K). At lower T’s, much

smaller �T’s can be used. It is equivalent to consider the
middle cell and average over 20 to 40 runs with different
random ’s and �s or to average the three middle cells over
fewer runs. The increase in � with isotopic purity of the
supercell and a comparison of �ðTÞ between the supercells
and Si nanowire data will be discussed elsewhere.
The calculated value, �ð125 KÞ ¼ 2:1� 10�2 W=cmK

is larger than, but consistent with, that of Si nanowires of
small diameter [26–29]. This discrepancy is anticipated
since phonon scattering at the surface reduces the thermal
conductivity of nanowires. We use periodic boundary con-
ditions and have no surface. Further, our supercell isotopi-
cally pure 28Si and the nanowires are isotopically mixed.
Finally, the cross sectional area of our supercell is smaller

FIG. 1 (color online). The Si192 supercell consists of 12 Si16
cells prepared in thermal equilibrium, the first one at Th and the
11 others at Tc. The temperature Tðx; tÞ is monitored in the
central cells (arrows).
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than that of the smallest nanowire. A 22 nm-diameter
nanowire (our 1.5 nm supercell) has �ð125 KÞ 150 (300)
times smaller than the bulk [30]: 6:0 W=cmK. The calcu-
lated � increases with supercell size: Si192, Si512, and Si768
have �ð125 KÞ ¼ 2:1� 10�2, 2:6� 10�2, and 4:5�
10�2 W=cm K, respectively.

Impurities perturb the phonon density of states at fre-
quencies that depend on the masses, bond strengths, lattice
relaxations, and distortions. The simplest way to vary the
impurity-related frequencies is to vary the mass. This
requires no additional geometry optimization, and the
same force constant matrix can be used to calculate the
dynamical matrix and prepare the supercell. We con-
structed a supercell containing 182 28Si host atoms and
10 ‘‘isotopes’’ MSi, randomly distributed in the supercell.
The net impurity concentration is 5 at.%. Then, we calcu-
lated �ðMÞ at 125 K. The result is shown in Fig. 3.

The curve shows a sharp minimum at M ¼ 56, exactly
twice the 28Simass. We cannot comment about the reasons
for this coincidence. We do not know at this time if the
factor two remains valid at other temperatures, for concen-
trations other than 5 at.% and in host crystals other than Si.
The shape of �ðMÞ strongly suggests a resonance, as if a
5% concentration of impurities with a specific mass and
force constant (in this case, the Si-Si force constant and

oscillator masses 28 and 56, respectively) resulted in a
band of localized vibrational modes able to absorb the
energy efficiently. �ð125 KÞ in 28Si182

56Si10 is more than

30 times lower than in 28Si192.
The figure also shows the result with the 5 at.% of MSi

replaced by 54Fe, 55Fe, 56Fe, 57Fe. In the case of
28Si182

56Fe10, � is reduced by only a factor of about two.

A similar value is obtained with a different random distri-
bution of Fe impurities. The smallest value of � occurs for
55Fe. Clearly, the mass is not the only factor involved. The
bond strength and lattice relaxations must play a role.
However, the figure implies that at least one resonance
exists, i.e., that it is a priori possible to lower � by a factor
of 30 or so.
Impurities heavier than the host atom(s) introducing

pseudolocal vibrational modes (pLVMs) [31] which repel
the bulk phonons of nearby frequencies. The result is an
‘‘island’’ of localized phonons with long vibrational life-
times. If such localized modes are resonant with the domi-
nant heat-carrying phonons, they absorb much of the
incoming energy and the thermal conductivity drops. In
our calculations, this manifests itself by substantially lon-
ger MD runs for M ¼ 56 before the temperature in the
middle cells starts to increase. The pLVMs associated with
the heavy Si atoms are shown in Fig. 4.

FIG. 3 (color online). Calculated �ð125 KÞ vs mass M in the
28Si182

MSi10 supercell. The calculation corresponds to a 5 at.%

concentration of a substitutional impurity of mass M. The (red)
squares show the � calculated in 28Si182

MFe10, withM ¼ 54, 55,
56, and 57.

FIG. 4 (color online). Plot of the square of the eigenvectors of
the dynamical matrix j�i¼x;y;ze

s
�ij2 with � is a sum over all the

56Si impurities (top figure, red vertical lines) or the 56Fe impu-
rities (bottom figure, blue vertical lines). The background pho-
non density of states (black) was calculated in the 28Si192
supercell with 50 q points.

FIG. 2 (color online). Temperature
Tðx; tÞ in the 7th cell of 28Si192 (Fig. 1)

if Th ¼ 180 K and Tc ¼ 120 K after 1
run and averaged over 10 and 20
runs, respectively. The fit to Tðx; tÞ (red
line) leads to �ð125 KÞ ¼ 2:1�
10�2 W=cmK.
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The key points of this Letter are as follows. (1) We have
developed a NEMD scheme to calculate thermal conduc-
tivities from first principles in supercells containing arbi-
trary distributions of impurities, with small T gradients.
Even though the method assumes the validity of Fourier’s
law, the values and calculated behavior of �ðTÞ are con-
sistent with measurements in Si nanowires. However, the
central results deal not with the absolute value of � but on
how it changes when defects are present in the supercell.
(2) For a fixed concentration (we used 5 at.%) of impurities
(we used ‘‘isotopes’’ MSi), �ðM;T ¼ 125 KÞ exhibits a
sharp minimum at M ¼ 56, with �ðM ¼ 56Þ �
�ð28Þ=30. Thus, there is at least one combination of im-
purity mass and bond strength for which a resonance
occurs, the pLVMs associated with the impurities gain
energy, the heat flow is dramatically reduced, and � sharply
drops. (3) The existence and position of the minimum of �
depends not just on the impurity mass (the drop is much
smaller if we use 56Fe instead of 56Si) but also on the
details of the bonding of the impurity to the host crystal.
Systematic calculations involving various elements of the
Periodic Table are needed in order to uncover which iso-
tope of which ‘‘magic’’ impurity has the maximum impact.
The present results show that such effort might be reward-
ing. (4) The changes in thermal conductivity are unremark-
able outside the ‘‘resonance’’ area. (5) It should be possible
to control the thermal conductivity of Si nanowire by
doping (or of nanochannels on a chip by implanting) care-
fully selected impurities to achieve a desired thermal con-
ductivity. Implanting a ‘‘thermal circuit’’ on a chip might
allow control over thermal gradients. Using impurities to
lower the � of covalent materials is of particular relevance
to the thermoelectric figure of merit [32] ZT ¼ S2T�=�
(where S is the Seebeck coefficient and � the electrical
conductivity). A reduction in � is accompanied by an
increase in ZT. In the case of semiconductors, � is con-
trolled by impurities. The present work shows that � could
be controlled by impurities as well.
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