
Fermionic Shadow Wave Function Variational Calculations
of the Vacancy Formation Energy in 3He

L. Dandrea,1,2 F. Pederiva,1,2 S. Gandolfi,3,4 and M.H. Kalos5

1Dipartimento di Fisica, University of Trento, via Sommarive 14, I-38050 Povo, Trento, Italy
2INFN, Gruppo Collegato di Trento, Trento, Italy

3S.I.S.S.A., International School of Advanced Studies, via Beirut 2/4, 34014 Trieste, Italy
4INFN, Sezione di Trieste, Trieste, Italy

5Lawrence Livermore National Laboratory Livermore, California 94550 USA
(Received 6 May 2009; published 25 June 2009)

We present a novel technique well suited for studying the ground state of inhomogeneous fermionic

matter in a wide range of different systems. The system is described using a fermionic shadow wave

function, and the energy is computed by means of the variational Monte Carlo technique. The general

form of the fermionic shadow wave function is useful for describing many-body systems with the

coexistence of different phases as well in the presence of defects or impurities, but it requires overcoming

a significant sign problem. As an application, we studied the energy to activate vacancies in solid 3He.
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The microscopic theoretical description of inhomoge-
neous Fermionic systems is a long-standing challenge.
Among such systems we can include defective quantum
crystals (e.g., 3He crystals or electron Wigner crystals in
the presence of vacancies or defects) or where an ordered
and disordered phase coexist such as, for instance, a fluid
or crystal. The main difficulty consists in the fact that one
has to deal with a wave function that combines the anti-
symmetry required by the Pauli principle and the inhomo-
geneity of the system itself.

While mean field methods are very efficient in dealing
with homogeneous phases (e.g., an extensive and perfect
solid), the phase coexistence or the description of local
defects presents difficulties. The main reason is the locality
of the inhomogeneity. Therefore, an explicit description of
the wave function seems a much better approach.

The rigorous microscopic evaluation of the vacancy-
formation energy in 3He is one of the problems that suffers
most from the limitations of standard theoretical tools.

The problem was successfully solved for many-boson
systems several years ago by means of the so-called
shadow wave function (SWFs) [1–3]—a class of wave
functions based on the introduction of auxiliary degrees
of freedom, which was successfully applied to a variety of
inhomogeneous phases of 4He [4,5] and p-H2 [6]:

c SWFðRÞ ¼ �pðRÞ
Z

�ðR;SÞ�sðSÞdS; (1)

where R ¼ fr1; . . . ; rNg are the coordinates of the N con-
stituents of the system, and S ¼ fs1; . . . ; sNg are auxiliary
degrees of freedom called ‘‘shadows.’’ �p and �s are two-

body correlation factors (of the so-called Jastrow form) for
particles and shadows, respectively, and �ðR;SÞ is the
kernel describing the correlations between particles and
shadows. Here, as in most applications, we take the kernel

to be a Gaussian:

�ðR;SÞ ¼ exp½�cðR� SÞ2�: (2)

The main properties of the SWF are (i) the fact that it
introduces correlations to all orders via the integration over
the auxiliary degrees of freedom and (ii) the fact that
despite its manifest translational invariance, it can describe
phases in which the translational symmetry is broken
(solids, interfaces, defects). However, the extension to
many-Fermion systems is hard. A straightforward exten-
sion (which we term ASWF) based on the antisymmetriza-
tion of the particle degrees of freedom was proposed
several years ago for the study of homogeneous 3He [7],
and later applied to the homogeneous electron gas [8]:

c ASWFðRÞ¼ Y
l¼";#

Dl½�kðriÞ��pðRÞ

�
Z
exp½�cðR�SÞ2��sðSÞdS; (3)

where Dl½�kðriÞ� is a Slater determinant of particle
orbitals.
This form has an evident drawback. Once the orbitals are

specified, as, e.g., plane waves satisfying the Born–
von Kármán conditions for an extensive system, the nodal
structure remains unchanged even if the auxiliary degrees
of freedom provide the correlations necessary to break the
symmetry so as to correctly describe a set of localized
particles.
The only viable solution to the problem is to introduce

an antisymmetric wave function in which crystallization
can be described without explicit symmetry breaking, but
that at the same time can develop a correct nodal structure
according to the phase described. This goal can be
achieved by writing a shadow wave function in which the
antisymmetry is imposed on the auxiliary degrees of free-
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dom, thereby maintaining explicit correlations among the
particles only in the symmetric part of the function. The so-
called fermion-shadow wave function (FSWF) assumes the
following form:

c FSWFðRÞ ¼ �pðRÞ
Z

exp½�cðR� SÞ2�
� Y

l¼";#
Dl½�kðsiÞ��sðSÞdS: (4)

It is possible to prove that c FSWF is antisymmetric under
the exchange of two particles of like spin [9]. The main
difference between the ASWF and FSWF comes from the
fact that the latter develops a nodal structure for the particle
degrees of freedom that depends on the integration over the
shadow degrees of freedom, and includes effects of corre-
lations to all orders. In particular it is easily proved that
when particles and shadows are strongly localized by the
effect of the two-body correlations among the shadows
themselves, the wave function is closely approximated by
a determinant of Gaussians connecting each particle to
each shadow, which is obviously closer to the structure
of the wave function expected for a quantum crystal.

There is a very high technical price to pay in order to
exploit the FSWF in computations. In a variational
Monte Carlo calculation, the absolute square of the wave
function is used as a probability density, PðRÞ, and the
local energy is averaged over the sampled configurations.
Thus

E ¼
R
dRc �ðRÞc ðRÞELR
dRc �ðRÞc ðRÞ ¼

R
dRPðRÞELR
dRPðRÞ ; (5)

where EL ¼ c�1Hc is the local energy of the system. The
integral is evaluated by generating configurations accord-
ing to P ¼ jc j2 that are sampled using the Metropolis
algorithm.

In using SWFs, one constructs c �ðRÞc ðRÞ by integrat-
ing over two sets of shadow variables, S and S0. The
integrand of SWFs may be defined as

ZðR;S;S0Þ ¼ �2
pðRÞ exp½�cðR� SÞ2 � cðR

� S0Þ2��sðSÞ�sðS0Þ; (6)

and some probability density function may be chosen,
~PðR;S;S0Þ. Sampling in the usual way, a generic operator
can be computed as

hOi ¼
R
dRdSdS0 ~PðR;S;S0ÞwðR;S;S0ÞOðRÞR

dRdSdS0 ~PðR;S;S0ÞwðR;S;S0Þ ; (7)

where

wðR;S;S0Þ ¼ ZðR;S;S0Þ
~PðR;S;S0Þ : (8)

A reasonable choice for an ordinary SWF is the integrand
itself:

PðR;S;S0Þ ¼ ZðR;S;S0Þ; (9)

with w ¼ 1 and ~P ¼ P ¼ Z. Similarly in c ASWF the in-
tegrand is positive, and can be used for PðR;S;S0Þ.
When using c FSWF, the integrand is not positive definite,

and sampling it is not possible. It is always possible,
however, to sample a suitable probability distribution and
compute a weighted average. The most straightforward
choice in this case is the absolute value of the integrand.
Let

QðR;S;S0Þ ¼ �2
pðRÞ exp½�cðR� SÞ2 � cðR� S0Þ2�

� Y
l¼";#

Dl½�kðsiÞ�
Y
l0¼";#

Dl½�kðs0iÞ��sðSÞ�sðS0Þ;

(10)

~PðR;S;S0Þ ¼ jQðR;S;S0Þj; (11)

wðR;S;S0Þ ¼ QðR;S;S0Þ
jQðR;S;S0Þj � �1: (12)

It should be noted that the normalization integral, while
containing positive and negative terms, is always positive
by construction. However, the speed of convergence of the
integral strongly depends on the fluctuations in sign of the
integrand. In particular, the intrinsic variance of the inte-
grand might become excessively large and prevent the
computation of an average with acceptable statistical er-
rors. This is particularly true for disordered systems, such
as liquids or disordered solids, where the wave function has
strong variations in space.
A simple reorganization of the calculation produces a

dramatic improvement in the Monte Carlo efficiency. In
applying the Metropolis method to shadow wave function,
including the ASWF variant, the usual procedure is to
sample new values of R, S, and S0 in turn. It is always
true that the integrals in Eq. (7) over S and S0 for fixed R
are positive. This suggests that a change in the order of
summation might be useful for the FSWF class of func-
tions, especially with disorder, by propagating the shadows
S and S0 forM steps (withM big enough) for fixedR. That
is, we expect that the sum of the �1 weight of M steps,�X

wi

�
S
�

�X
wi

�
S0
¼ WSWS0 ; (13)

will usually be positive. In fact, increasing M in the more
difficult cases where exchanges of sign often appear, gives
weights WSWS0 usually positive and significantly different
from zero. The algorithm becomes (i) sample a configura-
tion R of particles, (ii) sample M configurations of S,
(iii) sample M configurations of S0, (iv) combine all the
weight factors and accumulate the local energy for the
average and variance, and iterate from (i) to (iv) until the
convergence is reached and the variance is as low as
desired. For a calculation of the crystalline phase with no
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empty sites we typically sampled configurations of parti-
cles, and using M ¼ 1 or M ¼ 100 does not significantly
change the result. If a vacancy is present in the system and
the sign frequently changes, we usually sampled 5� 106

configurations and for each one M ¼ 1:5� 103.
As an illustration of the capabilities of FSWFs, we

studied the ground state of solid 3He in the range of molar
volumes between 20 and 24 cc=mol. A comparison with
previous variational estimates based on standard antisym-
metric wave functions is given below. As a next step, we
studied the vacancy-formation energy by computing the
energy in the presence of an empty site. As already pointed
out, standard imaginary time projection calculations re-
quire that a wave function imposing crystallization be
used, preventing one from taking properly into account
all the phenomenology related to lattice relaxation and
vacancy mobility. As a model He-He interaction we chose
the Hartree-Fock dispersion HFDHE2 potential by Aziz
et al. [10], which gives an overall description of the equa-
tion of state in good agreement with experiments, though it
does not introduce explicit three-body terms. In the Jastrow
functions �s the pseudopotential usðrijÞ was taken as the

rescaled particle-pair potential, vðrijÞ, namely, usðrijÞ ¼
�vð�rijÞ (� and � are additional variational parameters),

while in the �p we used a McMillan form [7] combined

with a summation over a basis as in Ref. [11]. All the
variational parameters entering in the wave function were
optimized at each density using an energy-variance mini-
mization technique of C. J. Umrigar and M. P. Nightingale
applied to the system with no defects.

We report the energy of 54 atoms in Table I. The energy
per particle is also displayed in Fig. 1, where we compared
our results (circles) (i) with those found in Ref. [7] com-
puted using the ASWF starting from a normal antiferro-
magnetic order NAF (diamonds), and including exchanges
(triangles), and (ii) with the more accurate diffusion
Monte Carlo (DMC) results of Ref. [12] (squares). As
can be seen the FSWF provides the lowest of the varia-
tional estimates of the energy. The DMC energies are lower
at each density by a constant value of about 1 K.

The vacancy-formation energy at constant pressure for a
system with N particles at a fixed density � can be com-

puted as [6,13,14]

�Ev ¼ EðN � 1; Nl ¼ NÞ � N � 1

N
EðN;Nl ¼ NÞ; (14)

where the number of lattice sites Nl is conserved and the
density of the two systems is the same. The vacancy-
formation energy includes contributions from lattice re-
laxation and tunneling that cannot be accounted for by a
wave function with an underlying lattice structure (such as
a Jastrow-Nosanow wave function). The computation of
the energy for the system with N � 1 particles is per-
formed by removing one particle and one shadow from
the trial wave function. It has to be noted that dropping one
shadow from the shadow determinant means having a hole
state in one of the determinants of Eq. (4). In the case of an
open-shell configuration where one or more single-particle
states are not filled, one needs to perform the calculation
using twist average boundary conditions [15,16] so that the
total wave function has zero total momentum. Using
FSWFs, we conjecture that it is not important which par-
ticular shadow orbital is omitted, because the total mo-
mentum of the system is always conserved.
We tested this by repeating the same calculation by

removing different single-shadow states from the kernel.
In particular the energy of the system where orbitals with
different vector number nwere removed is the same within
statistical error. We stress that, by contrast, in using a
normal many-body wave function with no shadows or
using an ASWF the energy would depend upon the unfilled
single-particle orbital. We assume for now that the system
containing one empty site is well described by the same
wave function of the system with the complete crystal. The
modified structure of the system with a vacancy is modeled
by the shadow extra variables. Therefore for 53 atoms we
used the same parametrization of �p, �s and the coupling

constant c entering in Gaussians of the system with 54
atoms.

TABLE I. Total and kinetic energy per particle at different
densities in the solid bcc phase for the crystal with no defects (54
atoms) and with the presence of an empty site (53 atoms). All the
energies are expressed in K.

��3 E=Nð54Þ T=Nð54Þ E=Nð53Þ T=Nð53Þ
0.419 0.422(1) 23.947(1) 0.69(1) 23.71(3)

0.427 0.548(2) 24.608(1) 0.78(8) 24.6(2)

0.438 0.955(1) 26.005(2) 1.26(1) 25.76(3)

0.457 1.556(1) 27.986(2) 1.844(8) 28.05(2)

0.479 2.455(1) 30.482(2) 2.801(7) 30.60(2)

0.503 3.481(1) 32.487(2) 4.127(7) 32.35(2)
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FIG. 1 (color online). The FSWF energy per particle (black
circles) as a function of the density. The result is compared with
the two results provided by the ASWF of Ref. [7] (blue triangles
and red diamonds) and with the DMC results of Ref. [12] (green
squares).
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The energies of the system with a vacancy are reported
in Table I. The vacancy-formation energy obtained using
Eq. (14) is given in Fig. 2, where we included the same
calculation using the static shadows (red squares). In the
latter case the shadow degrees of freedom are kept fixed on
the lattice sites so their effect is switched off. This corre-
sponds to using a variational wave function of the anti-
symmetric Jastrow-Nosanow type. The FSWF is more
effective as is clear from the figure. The vacancy-formation
energy computed by means of the FSWF is larger than the
experimental data (blue diamonds) taken from Ref. [17]
(see also Ref. [18] and references therein). The discrepancy
can be attributed to several possible sources. First of all the
calculation might be affected by strong finite-size effects.
In fact the effective concentration of vacancies in the
system is rather high (i.e., 1=N), and this might imply a
contribution to the vacancy-formation energy coming from
a vacancy-vacancy interaction. There is also additional
room for improvement in the overall variational descrip-
tion. For example, the parameters could be reoptimized in
the presence of the vacancy, or a more sophisticated ver-
sion of the wave function including a local-density depen-
dence of the two-body correlations might be used [4].

In conclusion, in this Letter we present a novel varia-
tional wave function to study fermionic systems with
impurities. We describe the fermionic shadow wave func-
tion that we used to compute the equation of state of solid
3He in the bcc phase, and the vacancy-formation energy as
a function of the density. We stress the fact that using
standard wave functions it is not possible for correctly
studying systems with the presence of defects or impurities
such as a vacancy. In particular the theoretical study of 3He
with vacancies requires a correct description of relaxation
and tunneling effects that cannot be addressed by using
standard forms of wave functions. Within the variational
framework we also computed the pair distribution func-
tions between atoms and the density around a vacancy. The

calculation of other properties is possible, but this, as well
as the technical improvement of our present method, will
be the subject of future work. Using a FSWF it is possible
to study 3He with the presence of impurities of 4He as well
as the mixture of the two gases, and to move near the
region where the solid and liquid phases start to coexist.
Work in these directions is in progress.
We thank G.V. Chester for useful discussions, C. J.
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University of Trento. This work was performed under the
auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract No. DE-
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FIG. 2 (color online). The vacancy-formation energy �Ev as a
function of the density using the FSWF (black circles) and by
keeping the shadows fixed. Some experimental data from
Ref. [17] is also reported for comparison. See the text for details.
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