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We study quantum and classical Hanbury Brown–Twiss correlations in waveguide lattices. We develop

a theory for the propagation of photon pairs in the lattice, predicting the emergence of nontrivial quantum

interferences unique to lattice systems. Experimentally, we observe the classical counterpart of these

interferences using intensity-correlation measurements. We discuss the correspondence between the

classical and quantum correlations, and consider path-entangled input states which do not have a classical

analogue. Our results demonstrate that waveguide lattices can be used as a robust and highly controllable

tool for manipulating quantum states, and offer new ways of studying the quantum properties of light.
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Lattices of coupled waveguides have been shown to be
extremely versatile in manipulating the flow of light [1,2].
Such systems enabled direct observation of optical ana-
logues of many fundamental quantum mechanical effects
such as Bloch oscillations [3,4], Anderson localization [5–
7], quantum Zeno effect [8], and many others [1,2,9].
However, these effects were all related to the wave prop-
erties of light rather than to its particle nature. Recently,
there has been a growing interest in the study of the
propagation of nonclassical light in coupled waveguides.
Quantum gates were implemented using waveguide pairs
acting as integrated beam splitters by Politi et al. [10].
Quantum walks [11] and propagation of correlated photon
pairs in periodic waveguide lattices have been studied by
our group [12]. Rai and co-workers have theoretically
studied the propagation of squeezed light in similar struc-
tures [13], while Longhi considered photon pairs in lattices
exhibiting Bloch oscillations [14].

In this Letter we show that photon pairs propagating in
waveguide lattices develop nontrivial quantum correlations
unique to lattice systems. We experimentally observe some
of these features, albeit with reduced contrast, using
Hanbury Brown–Twiss intensity-correlation measure-
ments with phase-averaged coherent states. Our results
suggest that waveguide lattices can be used as a robust
and highly controllable tool for manipulating quantum
states in an integrated manner, offering new ways of study-
ing quantum properties of light in structured media.

Consider a lattice that is made of identical optical wave-
guides, each supporting a single transverse mode, as shown
schematically in Fig. 1(a). The evolution of the quantized
electromagnetic field in each waveguide is given by the
Heisenberg equation for the bosonic creation operator ay.
For a lattice with nearest-neighbor couplings, the
Heisenberg equation for the creation operator of the kth
waveguide is given by
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¼ �ayk þ Ck;kþ1a
y
kþ1 þ Ck;k�1a

y
k�1; (1)

where z is the spatial coordinate along the propagations
axis, � is the propagation constant of the waveguides,
Ck;k�1 are the coupling constants between adjacent wave-

guides, and c=n is the speed of light in the medium. The
creation operators at any point along the propagation are
calculated by integrating Eq. (1):

ayk ðzÞ ¼ ei�z
X
l

Uk;lðzÞayl ðz ¼ 0Þ; Uk;lðzÞ ¼ ðeizCÞk;l:

(2)

Uk;lðzÞ is a unitary transformation given by calculating

the exponent of the coupling matrix izCk;l, which describes

the amplitude for the transition of a single photon from
waveguide l to waveguide k. Since any input state can be

FIG. 1 (color online). (a) A schematic view of the waveguide
lattice used in the experiment. The red arrow represents the input
light beam. (b) The calculated probability distribution hnqðzÞi of
a single photon injected into the central waveguide of a periodic
lattice, as a function of the propagation distance. The photon
couples coherently from each waveguide to its neighbors, and
the probability distribution concentrates at two outer lobes.
(c) The calculated correlation matrix �q;r, representing the

probability to detect at the output of the lattice exactly one
photon at waveguide r and one photon at waveguide q, when
both photons are coupled to a single waveguide at the center of
the lattice, i.e., j’0i � 1=

ffiffiffi
2

p
ay20 j0i. This matrix is a simple

product of two single-photon distributions, thus showing no
quantum interference. The grey bars are obtained by summing
the matrix along one axis, representing the results of a single
photon measurement.
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expressed with the creation operators ayl and the vacuum

state j0i, the evolution of nonclassical states along the
lattice can be calculated using Eq. (2). When a single

photon is coupled to waveguide l, the input state ayl j0i ¼
j1il will evolve to the superposition

P
kU

�
l;kj1ik, where j1ik

is the state of a single photon occupying waveguide k.
However, measurements of the probability distribution of
single photons are not enough to reveal the quantum prop-
erties of light, as the probability distribution of a single
photon jUk;lðzÞj2 evolves in the same way as the intensity

distribution of classical light [11,15,16]. The quantum
mechanical properties of light are observed when correla-
tions between the propagating photons are considered. In
this Letter we focus on the evolution of the photon-number

correlation function �q;r ¼ hayqayr araqi, when two indis-

tinguishable photons are injected into the lattice.
We start by analyzing the simplest example of two

coupled waveguides. In this case C1;1 ¼ C2;2 ¼ 0 and

C1;2 ¼ C2;1 ¼ C, which yield U1;1ðzÞ ¼ U2;2ðzÞ ¼
cosðCzÞ and U2;1ðzÞ ¼ U1;2ðzÞ ¼ i sinðCzÞ. The coupler

acts as a beam splitter, with the reflection and transmission
coefficients varying continuously along the propagation
[17,18]. If two photons are injected into the coupler, one
to each waveguide, the average photon number in each of

the waveguides is constant since n1ð2ÞðzÞ ¼ hay1ð2Þa1ð2Þi ¼
jU1;1j2 þ jU1;2j2 ¼ 1. The nonclassical nature of the light

is revealed by considering �1;2, the probability to detect

exactly one photon at each waveguide (a coincidence
measurement). Using Eq. (2) we obtain �1;2ðzÞ ¼
jU1;1U2;2 þU1;2U2;1j2 ¼ cos2ð2CzÞ. Since two paths lead

to the final state of one photon at each waveguide, they
interfere and the probability for a coincidence measure-
ment oscillates along the propagation. After propagating
exactly half a coupling length zBS ¼ �=4C, we find
�1;2ðzBSÞ ¼ 0. At this point the two photons bunch, and

are found together in either one of the two waveguides.
Uk;lðzBSÞ is identical to the transformation of a symmetric

beam splitter, and the coincidence measurement vanishes
in the same manner as in the Hong-Ou-Mandel interfer-
ometer [19]. Since a pair of coupled waveguides is equiva-
lent to a beam splitter, it is possible to cascade several of
them in order to implement quantum gates in an integrated
manner [10]. A lattice of many coupled waveguides en-
riches the variety of correlations obtained in integrated
structures, as we show bellow.

We now turn to study the quantum properties of a
periodic lattice with a large number of identical wave-
guides, where all the coupling constants are equal
Cn;n�1 ¼ C. As long as the photons are far from the

boundaries of the lattice, Eq. (2) yields Uq;kðzÞ ¼
iq�kJq�kð2CzÞ, where Jq is the qth Bessel function

[2,20]. When a single photon is coupled to waveguide k,
it will evolve to waveguide q with a probability nq ¼
jUq;kðzÞj2 ¼ Jq�kð2CzÞ2. The photon spreads across the

lattice by coupling from one waveguide to its neighbors

in a pattern characterized by two strong ‘‘ballistic’’ lobes,
as shown in Fig. 1(b). If a second photon is coupled to
another waveguide l, then the average photon number at

waveguide q is simply the incoherent sum nq ¼ hayqaqi ¼
Jq�kð2CzÞ2 þ Jq�lð2CzÞ2. Once again, the quantum nature

of light is revealed by considering the correlations between
the two photons. In the following we study the correlation
�q;r for three distinct two-photon input states: (i) both

photons are coupled to a single waveguide at the center

of the lattice, i.e., j’0i � 1=
ffiffiffi
2

p
ay20 j0i, (ii) the two photons

are coupled to two adjacent waveguides, j’1i � ay0a
y
1 j0i,

and (iii) the two photons are coupled to two waveguides,

separated by one waveguide, j’2i � ay�1a
y
1 j0i. These in-

put states can be experimentally realized by coupling
spontaneously down-converted photons into the lattice.
By carefully designing the phase matching conditions
and the collecting optics, the down-converted photons
can be directed to yield the desired input configuration.
The correlation matrix �g;r represents the probability of

detecting one photon at waveguide q and its twin photon at
waveguide r � q. The probability to detect both photons at
the same waveguide q is given by �q;q=2.

Figure 1(c) depicts the correlation matrix �q;r at the

output of the lattice, when the two photons are coupled
to the same input waveguide (the j’0i input state). In this
case, there is no interference and the correlation matrix is
just a product of the two classical probability distributions,
�q;r ¼ 2jUq0Ur0j2. The correlation map is characterized

by four strong lobes at the corners of the matrix, resulting
from the tendency of the photons to propagate in the
ballistic directions.
When the two photons are coupled to two neighboring

sites, i.e., the j’1i state, the correlation map changes con-
siderably as shown in Fig. 2(a). The most obvious feature is
the vanishing of the two ‘‘off-diagonal’’ lobes: the photons
tend to bunch to the same lobe. This can be thought of as a
generalized Hong-Ou-Mandel interference. Two paths lead
to a coincidence measurement between waveguide q and
waveguide r: either the photon from waveguide 0 propa-
gates to waveguide q and the photon from waveguide 1 to
waveguide r, or vice versa—from waveguide 0 to wave-
guide r and from waveguide 1 to waveguide q [21]. These
paths are complex and involve hopping of the photons
between many waveguides; nevertheless they interfere
and the correlation matrix is thus given by �q;r ¼
jUq;0Ur;1 þUq;1Ur;0j2. The destructive interference which
leads to vanishing of the off-diagonal lobes can be mathe-
matically traced to the inherent 90� phase shift associated
with nearest-neighbor coupling. We note that since the
photons tunnel between the waveguides continuously, the
visibility of the quantum interference only weakly depends
on the overall length of the lattice.
The four lobes are recovered when the photons are

initiated in the j’2i state, i.e., with one waveguide separa-
tion between the input sites [Fig. 2(b)]. However, this state
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also contains strong nonclassical features—note the differ-
ences between Fig. 1(c) and Fig. 2(b). The photon pair
exhibits bunching but with a different symmetry: if one
photon is detected in between the lobes, the probability to
detect the second photon in a lobe vanishes, even though a
single photon is most likely to reach the lobes. Similarly, if
one photon is detected in a lobe, it is certain that the other
photon is also in a lobe. It is important to note that in the
above examples, the quantum interference emerges since
the two photons are indistinguishable. Interferences with
distinguishable particles are possible, but require an en-
tangled input state [22].

Some of the special features of these quantum mechani-
cal correlations can be captured using intensity-correlation
measurements with classical light [23–25]. The quantum
mechanical probability to detect one photon at waveguide
q and its twin photon at waveguide r is related to the

classical intensity-correlation function �ðcÞ
q;r ¼ hIqIri where

h�i denotes statistical (or temporal) averaging. This non-
local intensity-correlation function is usually discussed in
the context of the classical Hanbury Brown–Twiss effect
and its quantum interpretation [26,27]. We experimentally
studied intensity correlations at the output of a periodic
waveguide lattice. The lattice of 89 identical waveguides
was fabricated on an AlGaAs substrate using e-beam li-
thography, followed by reactive ion etching. Each wave-
guide is 8 mm long and 4 �m wide [28]. The tunneling
parameter between sites C is determined by the etch depth
of the sample (1:3 �m) and by the distance between
neighboring waveguides (4 �m) and was measured to be

290m�1. We used an OPO (Spectra-Physics, OPAL)
pumped by a mode-locked Ti:Sapphire laser (Spectra-
Physics Tsunami) to generate 150 fs pulses, at a wave-
length of 1530 nm with 80 MHz repetition rate. The
average power was of the order of 0.1 mW; thus, nonlinear
effects were negligible.
Two-photon input states can be mimicked by injecting

into the lattice two phase-averaged coherent states: two
coherent states with the same mean photon number and a
fluctuating relative phase [23,29]. Thus, we injected two
coherent beams into two different sites of the lattice [30],
and randomized their relative phase with a spatial light
modulator. For each phase realization, the intensity profile
at the output facet of the slab was imaged on an infrared
camera, and the intensity correlations between all the
waveguides were computed. The intensity-correlation

function �ðcÞ
q;r was obtained by averaging the measured

correlations over many phase realizations. The measured
intensity correlations for the nearest-neighbor (mimicking
the j’1i state) and next-nearest-neighbor (j’2i state) inputs
are presented in Figs. 2(c) and 2(d), correspondingly. The
patterns are strikingly similar to the corresponding quan-
tum correlations �q;r, except for the reduced contrast.

Indeed, for two incoherent sources coupled to waveguides

k and l � k, the classical correlation is given by �ðcÞ
q;rðzÞ¼

I20ðjUq;lUr;kþUq;kUr;lj2þjUq;lUr;lj2þjUq;kUr;kj2Þ, where
I0 is the intensity coupled to each waveguide. The last two
terms are responsible for the reduced contrast. Thus, while
the off-diagonal lobes practically vanish for the quantum
input state j’1i, a straightforward calculation shows that

for classical light �ðcÞ
q;r > 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðcÞ
q;q�

ðcÞ
r;r

q
, in agreement with our

experimental results. Still these classical Hanbury Brown–
Twiss type intensity correlations do echo many of the
special features of the quantum correlations of Figs. 2(a)
and 2(b).
The great potential of waveguide lattices for quantum

information probably lies in the extension of these con-
cepts to nonuniform lattices in order to specially design the

FIG. 3 (color online). Quantum correlation maps �q;r for path-
entangled input states. (a) The two photons are injected together
to either of two neighboring waveguides, jc ðþÞi ¼ 1

2 �
ðay21 þ ay20 Þj0i. The correlation is significant only in the off-

diagonal peaks, which indicates that the two photons will emerge
from opposite sides of the lattice. (b) The correlation map for an
input state with two photons in either of two waveguides with
one waveguide separation, where there is a � phase between the
two possibilities, jc ð�Þi ¼ 1

2 ðay21 � ay2�1Þj0i.

FIG. 2 (color online). Quantum and classical correlations in
waveguide lattices. (a) The correlation matrix �q;r when the

photons are coupled to two adjacent waveguides, i.e., j’1i �
ay0a

y
1 j0i. The two photons exhibit bunching, and will emerge

from the same side of the lattice. (b) The correlation matrix when
the two photons are coupled to two waveguides separated by one
waveguide, j’2i � ay�1a

y
1 j0i. Here the two photons will both

emerge either from the lobes or from the center. (c) Measured

classical intensity correlations �ðcÞ
q;r, corresponding to the j’1i

input state. (d) Measured classical intensity correlations �ðcÞ
q;r,

corresponding to the j’2i input state.
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correlation properties, and in the utilization of these multi-
port systems for handling more complex quantum states.
As an example for the latter, consider the propagation of a
path-entangled input state with two photons in either of

two neighboring waveguides, jc ðþÞi ¼ 1
2 ðay21 þ ay20 Þj0i.

The calculated correlation map for this case is presented
in Fig. 3(a). The correlation in the ‘‘diagonal’’ peaks
completely vanishes and is significant only in the off-
diagonal peaks. Accordingly, the two photons will always
separate and emerge from different sides of the lattice. The
corresponding correlation map violates the Cauchy-

Schwarz inequality �q;r <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q;q�r;r

q
, indicating that this

case has no apparent classical analog. As another illustra-

tion, consider the state jc ð�Þi ¼ 1
2 ðay21 � ay2�1Þj0i. Now the

photons are in either of two next-nearest-neighboring
waveguides, yet with a �-phase shift. The correlation
map shown in Fig. 3(b) reveals that in this case one photon
will always reach a lobe while the other will always reach
the center.

In this Letter we studied the evolution of photon pairs
along periodic lattices, and have shown that the resulting
quantum correlations strongly depend on the input states.
We compared our predictions with a classical wave theory,
and experimentally demonstrated that some features can be
obtained using classical intensity-correlation measure-
ments, yet with reduced contrast. The correspondence
between the classical and quantum nature of light can be
further studied by considering the evolution of quantum
correlations in the presence of dephasing, which can be
introduced via lattice inhomogeneities. Furthermore,
waveguide lattices offer new possibilities as they can be
designed in ways that are not feasible using bulk or fiber
optical systems. For instance, waveguide structures that
vary adiabatically along the propagation can introduce a
new handle on the controlled preparation and manipulation
of quantum optical states. It will be especially interesting
to study the effect of such lattices on the propagation of
other types of nonclassical light, such as squeezed states
and cat states.
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