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Hořava’s ‘‘Lifschitz point gravity’’ has many desirable features, but in its original incarnation one is

forced to accept a nonzero cosmological constant of the wrong sign to be compatible with observation. We

develop an extension of Hořava’s model that abandons ‘‘detailed balance’’ and regains parity invariance,

and in 3þ 1 dimensions exhibit all five marginal (renormalizable) and four relevant (super-

renormalizable) operators, as determined by power counting. We also consider the classical limit of

this theory, evaluate the Hamiltonian and supermomentum constraints, and extract the classical equations

of motion in a form similar to the Arnowitt-Deser-Misner formulation of general relativity. This puts the

model in a framework amenable to developing detailed precision tests.
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Quantum gravity models based on the ‘‘anisotropic scal-
ing’’ of space and time have recently attracted significant
attention [1–5]. In particular, Hořava’s ‘‘Lifschitz point
gravity’’ [1] has very many desirable features, but in its
original incarnation, one is forced to accept a nonzero
cosmological constant of the wrong sign to be compatible
with observation (see also [5]). We outline a variant of
Hořava’s model that appears to be phenomenologically
viable.

The basic idea [1] is to write the spacetime metric in
ADM form

ds2 ¼ �N2c2dt2 þ gijðdxi � NidtÞðdxj � NjdtÞ; (1)

and then, (adopting � as a placeholder symbol for some
object with the dimensions of momentum), postulate that
the engineering dimensions of space and time are

½dx� ¼ ½���1; ½dt� ¼ ½���z: (2)

Effectively, one is implicitly introducing a quantity Z, with
the physical dimensions ½Z� ¼ ½dx�z=½dt�, and using the
theorists’ prerogative to adopt units such that Z ! 1.
(Ultimately we shall interpret this quantity Z in terms of
the Planck scale, and closely related Lorentz-symmetry
breaking scales.) If one prefers to characterize this quantity
Z in terms of a momentum � , then Z ¼ ��zþ1c, and we see
that in order for dimensional analysis to be useful, one
cannot simultaneously set both Z ! 1 and c ! 1.
(Attempting to do so forces both dx and dt to be dimen-
sionless, which then renders dimensional analysis impo-
tent.) Consequently, in theoretician’s (Z ! 1) units, one
must have

½Ni� ¼ ½c� ¼ ½dx�
½dt� ¼ ½��z�1; (3)

and one is free to additionally choose

½gij� ¼ ½N� ¼ ½1�; ½ds� ¼ ½���1: (4)

To minimize the algebraic manipulations, it is further
convenient to take the volume element to be

dVdþ1 ¼ ffiffiffi
g

p
Nddxdt; ½dVdþ1� ¼ ½���d�z: (5)

Note the absence of any factor of c in this definition. The
resulting model will, by its very construction, violate
Lorentz invariance; the payoff however is greatly improved
ultraviolet (UV) behavior for the Feynman diagrams [1–3],
coupled with a well-behaved low-energy infrared (IR)
limit.
We shall argue that an extension of the specific model

presented in [1] is (at least superficially) phenomenologi-
cally viable, and has a classical limit that is amenable to
analysis in an ADM-like manner. This is one of very few
quantum gravity models that has any realistic hope of
direct confrontation with experiment and observation.
The extrinsic curvature is most conveniently defined to

not include any explicit factor of c:

Kij ¼ 1

2N
f� _gij þriNj þrjNig: (6)

Then, ½Ni� ¼ ½dx�=½dt� ¼ ½��z�1, in agreement with the
above. Furthermore,

½Kij� ¼
½gij�

½N�½dt� ¼ ½��z: (7)

For the spatial slices, we have

½gij� ¼ ½1�; ½�i
jk� ¼ ½��; ½Ri

jkl� ¼ ½��2; (8)

the key point being

½Rijkl� ¼ ½��2; ½rRijkl� ¼ ½��3; ½r2Rijkl� ¼ ½��4:
(9)

For the kinetic term, we consider
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J ðKÞ ¼ gKfðKijKij � K2Þ þ �K2g: (10)

(Standard general relativity would enforce � ! 0.) Take
the kinetic action to be

SK ¼
Z

J ðKÞdVdþ1 ¼
Z

J ðKÞ ffiffiffi
g

p
Nddxdt: (11)

Again, note that for convenience, it is most useful to
arrange the absence of any explicit factors of c. Then,

½SK� ¼ ½gK�½��z�d: (12)

But since the kinetic action is (by definition) chosen to be
dimensionless, we have

½gK� ¼ ½��ðd�zÞ: (13)

Note that the kinetic coupling constant gK is dimensionless
exactly for d ¼ z, which is exactly the condition that was
aimed for in [1]. In a simplified model based on scalar field
self interactions, this is exactly the condition for well-
behaved UV behavior derived in [3]. Once we have set d ¼
z to make gK dimensionless, then provided gK is positive,
one can without loss of generality rescale the time and/or
space coordinates to set gK ! 1.

Now consider the potential term

SV ¼ �
Z

V ðgÞdVdþ1 ¼ �
Z

V ðgÞ ffiffiffi
g

p
Nddxdt; (14)

where V ðgÞ is some scalar built out of the spatial metric
and its derivatives. Then,

½SV � ¼ ½V ðgÞ�½���d�z; (15)

whence

½V ðgÞ� ! ½��dþz: (16)

But to keep the kinetic coupling gK dimensionless, we
needed z ! d. Therefore,

½V ðgÞ� ! ½��2d: (17)

But V ðgÞ must be built out of scalar invariants calculable
in terms of the Riemann tensor (Rm) and its derivatives,
which tells us it must be constructible from objects of the
form

fðRmÞd; ½ðrRmÞ�2ðRmÞd�3; etc . . .g: (18)

In general, in dþ 1 dimensions, this is a long but finite list.
All of these theories should be well-behaved as quantum
field theories [1,3]. (In particular, certain key aspects of [1]
generalize nicely to dþ 1 dimensions.) In the specific case
d ¼ 3, we have

½V ðgÞ� ! ½��6; (19)

and so obtain the short and rather specific list:

fðRmÞ3; ½rðRmÞ�2; ðRmÞr2ðRmÞ;r4ðRmÞg: (20)

But in 3 dimensions, the Weyl tensor automatically van-

ishes, so we can always decompose the Riemann tensor
into the Ricci tensor (Rc), Ricci scalar, plus the metric.
Thus, we need only consider the much simplified list:

fðRcÞ3; ½rðRcÞ�2; ðRcÞr2ðRcÞ;r4ðRcÞg: (21)

We now consider a model that generalizes that of Hořava
[1] by containing all possible terms of this type, eliminat-
ing redundant terms using (i) integration by parts and
discarding surface terms, (ii) commutator identities,
(iii) Bianchi identities, and (iv) special relations appropri-
ate to 3 dimensions. (Weyl vanishes; properties of Cotton
tensor.) We do not need explicit parity violation, and for
simplicity, we choose to exclude it.
Hořava’s prescription for keeping the calculation trac-

table was to impose two simplifications: (i) a ‘‘project-
ability condition’’ on the lapse function [1] (this effectively
is the demand that the lapse NðtÞ is a function of t only, not
a function of position) and (ii) a condition Hořava referred
to as ‘‘detailed balance’’ [1]. We shall retain the ‘‘project-
ability condition’’ but abandon ‘‘detailed balance.’’ We
consider ‘‘detailed balance’’ to be too restrictive and physi-
cally unnecessary.
It should be remarked that in standard general relativity,

the ‘‘projectability condition’’ can always be enforced
locally as a gauge choice; furthermore, for physically
interesting solutions of general relativity (though not nec-
essarily for perturbations around those solutions), it seems
that this can always be done globally. For instance, for the
Schwarzschild spacetime, this ‘‘projectability condition’’
holds globally in Painlevé–Gullstrand coordinates [6],
while in the Kerr spacetime, this condition holds glo-
bally (for the physically interesting r > 0 region) in
Doran coordinates [7]. Furthermore, Friedmann-
Lemaitre-Robertson-Walker cosmologies also automati-
cally satisfy this ‘‘projectability condition.’’
However, there is a price to pay for enforcing it at the

level of the action (and before any functional variation):
the theory we are considering is not necessarily the most
general theory with all possible terms of dimension six.
(But it is still general enough to be a significant general-
ization with respect to Hořava’s model [1].)
After a brief calculation, we find that there are only five

independent terms of dimension ½��6:
R3; RRi

jR
j
i; Ri

jR
j
kR

k
i; Rr2R; riRjkriRjk:

(22)

These terms are all marginal (renormalizable) by power
counting [1,3]. In Hořava’s article [1], only a particular
linear combination of these five terms is considered:
Phrased in terms of the Cotton tensor, Hořava considers
the single ½��6 term Ci

jC
j
i.

If we now additionally add all possible lower-dimension
terms (relevant operators, super-renormalizable by power
counting), we obtain four additional operators:
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½��0:1; ½��2:R; ½��4:R2; RijRij: (23)

This now results in a potential V ðgÞ with nine terms and
nine independent coupling constants. In contrast, Hořava
[1] chooses a potential V ðgÞ containing six terms with
only three independent coupling constants, of the form
ð~g2Cottonþ ~g1Einsteinþ ~g0metricÞ 2.

Assembling all the pieces, we now have

S ¼
Z
½J ðKÞ �V ðgÞ� ffiffiffi

g
p

Nd3xdt; (24)

with

V ðgÞ ¼ g0�
6 þ g1�

4Rþ g2�
2R2 þ g3�

2RijR
ij þ g4R

3

þ g5RðRijR
ijÞ þ g6R

i
jR

j
kR

k
i þ g7Rr2R

þ g8riRjkriRjk; (25)

where we have introduced suitable factors of � to ensure
the couplings ga are all dimensionless. Now assuming
g1 < 0, we can without loss of generality rescale the time
and space coordinates to set both gK ! 1 and g1 ! �1.
The Einstein–Hilbert piece of the action is now

SEH¼
Z
fðKijKij�K2Þþ�4R�g0�

6g ffiffiffi
g

p
Nd3xdt; (26)

and the ‘‘extra’’ Lorentz-violating terms are

SLV ¼
Z
f�K2 � g2�

2R2 � g3�
2RijR

ij � g4R
3

� g5RðRijR
ijÞ � g6R

i
jR

j
kR

k
i � g7Rr2R

� g8riRjkriRjkg ffiffiffi
g

p
Nddxdt: (27)

This perfectly reasonable classical Lorentz-violating the-
ory of gravity certainly deserves study in its own right.

While these Z ! 1 units have been most useful for
power counting purposes, when it comes to phenomeno-
logical confrontation with observation, it is much more
useful to adapt more standard ‘‘physical’’ (c ! 1) units,
in which ½dx� ¼ ½dt�. The transformation to physical
units is most easily accomplished by setting ðdtÞZ¼1 !
��2ðdtÞc¼1. In these physical units, the Einstein–Hilbert
piece of the action becomes

SEH ¼ �2
Z
fðKijKij � K2Þ þ R� g0�

2g ffiffiffi
g

p
Nd3xdt;

(28)

and the ‘‘extra’’ Lorentz-violating terms become

SLV¼�2
Z
f�K2�g2�

�2R2�g3�
�2RijR

ij�g4�
�4R3

�g5�
�4RðRijR

ijÞ�g6�
�4Ri

jR
j
kR

k
i�g7�

�4Rr2R

�g8�
�4riRjkriRjkg ffiffiffi

g
p

Nddxdt: (29)

From this normalization of the Einstein–Hilbert term, we
see that in physical (c ! 1) units

ð16�GNewtonÞ�1 ¼ �2; � ¼ g0�
2

2
(30)

so that � is identified as the Planck scale. The cosmological
constant is determined by the free parameter g0, and ob-
servationally g0 � 10�123 (renormalized after including
any vacuum energy contributions). In particular, the way
we have set this up, we are free to choose the Newton
constant and cosmological constant independently (and so
to be compatible with observation). In contrast, in the
original model presented in [1], a nonzero Newton constant
requires a nonzero cosmological constant, and as long as
Hořava’s ‘‘detailed balance’’ symmetry is preserved, this
will be of the wrong sign to be compatible with cosmo-
logical observations.
The extra Lorentz-violating terms consist of one kinetic

and seven higher-curvature terms. The Lorentz-violating
term in the kinetic energy leads to an extra scalar mode for
the graviton [1], with fractional Oð�Þ effects at all mo-
menta. Phenomenologically, this behavior is potentially
dangerous and should be carefully investigated. In contrast,
the various Lorentz-violating terms in the potential become
comparable to the spatial curvature term in the Einstein–
Hilbert action for physical momenta of order

�f2;3g ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffi
jgf2;3gj

q ; �f4;5;6;7;8g ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgf4;5;6;7;8gj4

q : (31)

Thus, the higher-curvature terms are automatically sup-
pressed as we go to low curvature (low momentum).
Note that we have also divorced the Planck scale � from
the various Lorentz-breaking scales �f2;3;4;5;6;7;8g, and that

we can drive the Lorentz-breaking scale arbitrarily high by
suitable adjustment of the dimensionless couplings gf2;3g
and gf4;5;6;7;8g. It is these pleasant properties that make the

model phenomenologically viable—at least at a superficial
level—and that encourage us to consider more detailed
confrontation with experiment and observation. Since the
UV dominant part of the Lorentz breaking is sixth order in
momenta, in the absence of significant UV-IR mixing, it
neatly evades all current bounds on Lorentz-symmetry
breaking [8–10]. The potentially risky issue of UV-IR
mixing should also be carefully investigated in this model
[11]. That UV-IR mixing is not invariably fatal can be
inferred from the fact that observationally many
condensed-matter analogue systems exhibit emergent
Lorentz symmetry in the IR [6], and that certain specific
systems exhibit a ‘‘natural’’ suppression of Lorentz-
violating effects [12].
Varying with respect to the lapse NðtÞ one obtains the

Hamiltonian constraint

H¼
Z ffiffiffi

g
p

Hd3x¼
Z ffiffiffi

g
p fJ ðKÞþV ðgÞgd3x¼0: (32)

The difference compared to standard general relativity lies
in (i) the � term in the kinetic energy, (ii) the more
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complicated form of the potential V ðgÞ, and (iii) because
of the assumed ‘‘projectability condition’’ on the lapse
NðtÞ one cannot derive a super-Hamiltonian constraint,
and must remain satisfied with this spatially integrated
Hamiltonian constraint.

Varying with respect to the shift Ni, one obtains the
supermomentum constraint

ri�
ij ¼ 0; (33)

where the supermomentum is

�ij ¼ @½NJ ðKÞ�
@ _gij

¼ �fKij � Kgij þ �Kgijg: (34)

The difference compared to standard general relativity is
utterly minimal and lies solely in the � term.

By varying with respect to gij, one now obtains the

dynamical equation

1ffiffiffi
g

p @tð ffiffiffi
g

p
�ijÞ ¼ �2NfðK2Þij � KKij þ �KKijg

þ N

2
J ðKÞgij þ ðrmN

mÞ�ij

þ ½L ~N��ij þ
Nffiffiffi
g

p �SV
�gij

: (35)

This is very similar to standard general relativity: There is
a straightforward extra contribution coming from the �
term in the kinetic energy, but the only real subtlety lies
in evaluating the �SV =�gij terms. This is somewhat tedi-

ous, but since we know that SV is the most general action
one can build out of the metric using 0, 2, 4, or 6 deriva-
tives, we can deduce that the ‘‘forcing term’’

Fij ¼ 1ffiffiffi
g

p �SV
�gij

(36)

is the most general symmetric conserved tensor one can
build out of the metric and 0, 2, 4, or 6 derivatives. (An
explicit evaluation of these terms has been performed, but
the result is too long to write down here; details are
provided elsewhere [13].) The relevance of these observa-
tions is that the classical limit has now been cast into an
ADM-like form, suitable, for instance, for detailed numeri-
cal investigations.

The model so far only considers pure gravity, and seems
to be very well behaved. It is a very definite proposal with a
small number of adjustable parameters, (many fewer ad-
justable parameters than the standard model of particle
physics), making it worthwhile to put in the additional
effort to develop precision tests that would confront this
model with experimental and observational bounds. The
most obvious tests would come from the observational
limits on Lorentz violations [8–11]. By inspection, the
model should also fall into the PPN framework, and spe-
cifically be subject to ‘‘preferred frame’’ effects [14]—this
should lead to stringent limits on the size of the Lorentz-

breaking parameters �a arising from solar system physics.
Up to this stage, we have not had to make any specific
commitment as to how matter couples to the gravitational
field: this is a key open problem for future investigations.
In conclusion, while there is certainly a tremendous

amount of work still to be done, we would argue that this
model could very well in its own right be a promising
candidate for quantum gravity, or alternatively for the
effective field theory resulting from some more fundamen-
tal theory. Last but certainly not least, the model discussed
above is one of very few quantum gravity models that has
any realistic hope of direct confrontation with experiment
and observation, and so is well worth a very careful look.
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