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Different numbers of self-gravitating particles (in different types of periodic motion) are most likely to

generate very different shapes of gravitational waves, some of which, however, can be accidentally almost

the same. One such example is a binary and three-body system for Lagrange’s solution. To track the

evolution of these similar wave forms, we define a chirp mass to the triple system. Thereby, we show that

the quadrupole wave forms cannot distinguish the sources. It is suggested that wave forms with higher ‘th

multipoles will be important for classification of them (with a conjecture of ‘ � N for N particles).

DOI: 10.1103/PhysRevLett.102.251101 PACS numbers: 04.30.Db, 04.25.Nx, 95.10.Ce, 95.30.Sf

Introduction.—Can one see an apple fall on a dark night?
This is an inverse problem in gravitational wave astron-
omy. It can be specifically stated as ‘‘how can we know the
source information such as the number of particles, their
geometrical shape, and motion from observations of gravi-
tational waves?’’ This problem is analogous to the well-
known one for the sound, which was raised by Kac in
Ref. [1]. Seeking an answer is beyond the scope of this
Letter. As a specific issue which is related with the inverse
problem, we shall examine gravitational radiation by a
certain class of orbital motion of self-gravitating objects.

In the near future, direct detection of gravitational rip-
ples (and consequently gravitational waves astronomy)
will come true owing to a lot of effort by ongoing or
designed detectors [2–7]. One of the most promising as-
trophysical sources is inspiraling and finally merging bi-
nary compact stars. Numerical relativity has succeeded in
simulating merging neutron stars and black holes [8–12].
Analytic methods also have nicely prepared accurate wave
form templates for inspiraling compact binaries, notably
by the post-Newtonian approach (see [13,14] for reviews)
and also by the black hole perturbations especially at the
linear order in mass ratio (see also [15] for reviews).
Bridges between the inspiraling stage and the final merging
phase are currently under construction (e.g., [16,17]).

There is a growing interest in potential astrophysical
sources of gravitational waves involving 3-body interac-
tions (e.g., [18,19] and references therein). It is well known
that even the classical three-body (or N-body) problem in
Newtonian gravity admits an increasing number of solu-
tions [20,21]. Some of the orbits are regular, while the
others are chaotic. For simplicity, we focus on several
periodic orbits of the three-body system: Lagrange’s tri-
angle, Henon’s crisscross and Moore’s figure eight, which
are explained later (see also Fig. 1). Here, it should be
noted that Nakamura and Oohara [22] studied numerically
the luminosity of gravitational radiation by N test particles
orbiting around a Schwarzshild black hole, as an extension
of Detweiler’s analysis of the N ¼ 1 case [23] by using the
Teukolsky equation [24], in order to show the phase can-
cellation effect, which had been pointed out by Nakamura

and Sasaki [25]. Their N particles are test masses but not
self-gravitating. Another inverse problem of reconstructing
the gravitational wave signal from the noisy data acquired
by a network of detectors has been discussed (e.g.,
[26,27]). Our aim and setting are completely different
from those of the existing works.
The purpose of this Letter is (1) to point out a case where

very similar shapes of waves are generated accidentally by
different numbers of particles and (2) to show that the
usage of higher multipole contributions will be necessary
for distinguishing such sources. In order to track the evo-
lution of the wave forms, we shall define the chirp mass so
as to extend to a three-body system. Thereby, we shall
show that the octupole order is required to disentangle such
very similar wave forms that coincide with each other at
the quadrupole level. This will suggest that theoretical
wave forms including sufficiently higher ‘th order multi-
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FIG. 1 (color online). Orbital shapes. (a) Top left: circular
orbit for two-body system as a reference. (b) Top right: triangle
solution by Lagrange. (c) Bottom right: crisscross orbit by
Henon. (d) Bottom left: figure eight trajectory by Moore.
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pole will be important for classification of sources gener-
ating such similar wave forms (with a conjecture about ‘
and N).

Throughout this Letter, we take the units of G ¼ c ¼ 1.
Some periodic orbits for three-body systems.—For sim-

plicity, we assume that the motion of massive bodies
follows the Newtonian equation of motion. It is impossible
to describe all the solutions to the three-body problem even
for the 1=r potential, as mentioned above. The simplest
periodic solutions for this problem were discovered by
Euler (1765) and by Lagrange (1772). The Euler’s solution
is a collinear solution in which the masses are collinear at
every instant with the same ratios of their distances. The
Lagrange’s one is an equilateral triangle solution in which
each mass moves in an ellipse in such a way that the
triangle formed by the three bodies revolves. Let us take
as another interesting solution the so-called crisscross orbit
found by Henon in 1976 [28]. (See also [29] for the initial
condition for each mass and its recent extensions.)

Since the figure eight solution was found first by Moore
by topological classification [30], choreographic solutions
have recently attracted increasing interests in astronomy,
mathematics and physics, where a solution is called cho-
reographic if every massive particles move periodically in
a single closed orbit. The figure eight solution is that three
bodies move periodically in a single figure eight [30]. The
existence of such a figure eight orbit was proven by
Chenciner and Montgomery [31], where the numerical
initial condition for each mass is also given. This odd
solution is remarkably stable in Newtonian gravity
[32,33]. Heggie discussed a formation mechanism as an
outcome from scattering of two binaries [34]. Its unicity up
to scaling and rotation has been recently proven [35]. The
trick figure eight remains true even if we consider the
general relativistic (GR) effects at the post-Newtonian
order [36] and also at the second post-Newtonian one
[19]. This is a marked contrast to a binary case, which
produces a complicated flowerlike pattern by the periastron
advance in Einstein gravity. It is interesting to investigate
relativistic effects on various kinds of orbital motions,
which are discussed mostly in Newtonian gravity. It is a
topic of future study. The radiation by the figure eight has
been also investigated [18].

Gravitational waves.—In the previous part, we have
mentioned several periodic solutions. Figure 2 shows the
gravitational radiation by massive particles in these peri-
odic motions, where the quadrupole formula is used.

Interestingly, the wave forms from a binary in circular
motion and a three-body system constituting the Lagrange
solution are the same in shape. It is worthwhile to mention
that, if the third mass is extremely small, its contribution to
the quadrupole waves becomes linear but not cubic in mass
because its orbital radius is of the order of a triangle’s side
length, namely, bounded from above. If one adjusts prop-
erly distance r from an observer to the source with the same
orbital period, the wave forms (including the amplitudes)
could perfectly agree with each other.

Chirp mass for three-body systems.—The wave forms
shown above are valid only in the short term. The gravita-
tional waves will gradually carry away the system’s energy
and angular momentum, and will eventually shrink the
orbital size. Consequently, the amplitude and frequency
of the waves will become larger and higher, respectively,
with time. For a binary case, the frequency sweep is
characterized by its chirp mass.
Here, we investigate the evolution of the wave forms for

a three-body system for the Lagrange’s solution (on x-y
plane). The initial positions of each mass denoted by mp

(p ¼ 1, 2, 3) are expressed as x1 ¼ ð0; 0Þ, x2 ¼
að ffiffiffi

3
p

=2; 1=2Þ, and x3 ¼ að0; 1Þ, where the side of a regular
triangle is denoted as a. We take the coordinates such that

the center of mass (COM) is at rest as ðxCOM; yCOMÞ ¼
að ffiffiffi

3
p

�2=2; ð�2 þ �3Þ=2Þ, where the total mass and mass
ratio are denoted as mtot �

P
pmp and �p � mp=mtot,

respectively. The orbital frequency ! for the triangle sat-
isfies !2 ¼ mtot=a

3.
Henceforth, it is convenient to employ the COM coor-

dinates (X, Y) that can be obtained by a translation from (x,
y). In the COM coordinates, the location of each mass at
any time is expressed as Xp ¼ apð cosð!tþ �pÞ; sinð!tþ
�pÞÞ, where ap is defined as a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2COM þ y2COM

q
, a2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð31=2a=2� xCOMÞ2 þ ða=2� yCOMÞ2
q

, and a3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2COM þ ða� yCOMÞ2

q
, respectively, and �p denotes the

angle between the new X axis and the direction of each
mass at t ¼ 0 (see Fig. 3).
By using the standard quadrupole formula, the energy

loss rate for the Lagrange’s orbit is expressed as
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FIG. 2 (color online). Gravitational wave forms in arbitrary
units (T ¼ orbital period). Dotted blue and solid red curves
denote þ and � modes, respectively. (a) Top left: Gravita-
tional wave forms by binary system with a mass ratio of 2:3 in
circular motion. (b) Top right: Lagrange’s triangle solution for a
mass ratio of 1:2:3. (c) Bottom right: Henon’s crisscross.
(d) Bottom left: Moore’s figure eight. Crisscross and figure eight
have larger curvatures in the orbital shapes than Keplerian and
Lagrangian orbits, which lead to larger acceleration of the
particles and thus relatively stronger radiation.
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dE

dt
¼ 32

5
m2

tot!
6

��X3
p¼1

�pa
2
p

�
2

� 4
X
p<q

�p�qa
2
pa

2
qsin

2ð�p � �qÞ
�
: (1)

The equation of motion for each body is rewritten in an
effective one-body form as [20] d2Xp=dt

2 ¼
�MpXp=jXpj3, where we define the effective mass as

Mp ¼ mtot

�X
q�p

�2
q þ

X
q;r�p

�q�r=2

�
3=2

: (2)

The orbital frequency is the same for each body, which
provides an identity as Mp=a

3
p ¼ !2 from the above ef-

fective one-body equation of motion. One can reexpress ap
as ap ¼ ðMp=mtotÞ1=3a in terms of Mp because !2 ¼
mtot=a

3.
For the triangle solution, we obtain the sum of the

Newtonian kinetic and potential energy as

Etot ¼ �m2
tot

2a

�X
p�q

�p�q �
X
p

�p

�
Mp

mtot

�
2=3

�
: (3)

By assuming adiabatic changes, we use the energy balance
between the system energy loss and gravitational radiation.
We find

1

a

da

dt
¼ � 64

5

m3
tot

a4

�P
p �p

�
Mp

mtot

�
2=3

	
2 � 2

P
p�q �p�q

�
Mp

mtot

�
2=3

�
Mq

mtot

�
2=3

sin2ð�p � �qÞ
P

p�q �p�q �
P

p �p

�
Mp

mtot

�
2=3

; (4)

which provides the shrinking rate of the triangle due to gravitational radiation reaction.
Since the gravitational waves frequency fGW is twice of the orbital one, we have f2GW ¼ mtot=�

2a3. Therefore,
d lnfGW=dt ¼ �ð3=2Þd lna=dt. Using this in Eq. (4), we obtain

1

fGW

dfGW
dt

¼ 96

5
�8=3M5=3

chirpf
8=3
GW; (5)

where we defined a chirp mass as

Mchirp ¼ mtot

2
664
�P

p �p

�
Mp

mtot

�
2=3

	
2 � 2

P
p�q �p�q

�
Mp

mtot

�
2=3

�
Mq

mtot

�
2=3

sin2ð�p � �qÞ
P

p�q �p�q �
P

p �p

�
Mp

mtot

�
2=3

3
775

3=5

: (6)

It is worthwhile to mention that the frequency sweep for
the triple system can take the same form as that for
binaries. One can show that Eq. (6) recovers the binary
chirp mass in the limit of m3 ! 0.

Equation (5) suggests that we cannot distinguish
two cases of the binary and triple systems by using only
the quadrupolar parts even if the frequency sweep is
observed.

Octupole wave forms.—In a wave zone, the gravitational
waves denoted by hTTij can be expressed asymptotically in

multipolar expansions [37]. The ratio of the octupole part
to the quadrupole one is of the order of v=c, where v is a
typical velocity of the matter. For instance, it is about 10%
if a ¼ 100mtot, which is assumed in order to exaggerate the
octupole correction in Fig. 4.

After straightforward calculations, one can obtain an
expression of octupolar parts of the gravitational waves

that are generated by the three-body system for the
Lagrange’s solution with arbitrary mass ratio. For instance,
one of the relevant octupole moments is expressed as

Ixxy ¼ 1

20

X3
p¼1

mpjXpj3 sinð!tþ �pÞ � 1

4

� X3
p¼1

mpjXpj3 cos3ð!tþ �pÞ: (7)

Ixyy can be obtained by interchanges as x $ y and sin$
cos. By using such analytic expressions, one can obtain the
octupole contributions to wave forms.
It should be noted that no octupole radiation is emitted

along the orbital axis for any planar motions. Let us take
the observational direction along x axis. Then, we have
only þ mode without � mode. Figure 4 shows that a

FIG. 3. Definition of �p in the Lagrange’s triangle solution.
The angle �p is measured from X axis to the direction of each

mass at the initial time.
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difference between the wave forms (one by the binary and
the other by the triplet) comes up at the octupole order. The
octupole radiation amplitude by binaries is proportional to
the mass difference [38]. On the other hand, the octupole
radiation exists for triangles even if they are all equal
masses. Cases of various mass ratios and observational
directions are a topic of future study.

Conclusion.—In summary, we have examined different
numbers of self-gravitating particles in gravitational waves
astronomy. In order to track the evolution of the similar
wave forms from the two-body and three-body systems, we
have defined a chirp mass to the three-body case. We have
shown that the wave forms at the quadrupole level cannot
distinguish the sources even with observing frequency
sweep. Our example suggests that theoretical wave forms
including higher multipole parts will be important for
classification of such similar imprints. Higher post-
Newtonian corrections both to the wave forms and to the
motion of bodies should be incorporated. This is a topic of
future study. In particular, the stability of the Lagrange
orbit due to GR effects is poorly understood.

It is conjectured by induction from our result that clas-
sification of N (or fewer) particles producing (nearly) the
same wave forms requires inclusions of the ‘th multipole
part with ‘ � N. Cases of ‘ < N are realized for instance
by the crisscross and figure eight. Proving (or disproving)
this conjecture is left as future work.
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FIG. 4 (color online). Gravitational wave forms in arbitrary
units for a binary (solid black curve) with m1:m2 ¼ 2:3 and a
Lagrange solution (dotted red curve) with m1:m2:m3 ¼ 1:2:3,
where both the quadrupole and octupole parts are included. As a
reference, we give the quadrupolar wave forms from the same
sources (dashed blue curve). We assume a ¼ 100mtot in order to
exaggerate a correction by the octupole (nearly 10% expected in
this figure). One can see that the dashed blue curve will overlap
with the solid black one after they are shifted by choosing the
initial phase. This coincidence is because the octupolar waves
for the binary case are proportional to the mass difference [38]
and thus relatively small in this figure.
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