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We study the quantumness of bipartite correlations by proposing a quantity that combines a measure of

total correlations—mutual information—with the notion of broadcast copies—i.e., generally nonfactor-

ized copies—of bipartite states. By analyzing how our quantity increases with the number of broadcast

copies, we are able to classify classical, separable, and entangled states. This motivates the definition of

the broadcast regularization of mutual information, the asymptotic minimal mutual information per

broadcast copy, which we show to have many properties of an entanglement measure.
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Much work has recently been performed in order to
analyze how correlations can be understood, quantified
and classified as either classical or quantum [1,2]. Such
studies go beyond the standard entangled-versus-separable
[3] distinction and are relevant not only for our under-
standing of the fundamental differences between the clas-
sical and quantum world, but also from the point of view of
quantum information processing [4]. Indeed, entanglement
is a necessary prerequisite for a task such as quantum key
distribution [5], but its role in quantum computation is less
clear, as there are cases where quantum correlations that
are weaker than entanglement seem to be sufficient to
boost performance with respect to classical computation
[6].

In studying the quantumness of correlations, researchers
have focused on the following hierarchy of states.
Classical-classical (CC) states are of the form

P
ijp

AB
ij jii�

hijA � jjihjjB, with fjiiAg and fjjiBg orthonormal bases, and
fpAB

ij g a joint probability distribution. A CC state is the

embedding of a probability distribution in the formalism of
quantum theory and as such has no quantumness. CC states
are a proper subclass the class of separable states, which
are of the form

P
kpk�

k
A � �k

B for a probability distribution
fpkg and local quantum states �k

A and �k
B. Separable states

can be generated with local operations and classical com-
munication (LOCC) only and are therefore considered to
have little quantumness. The remaining states are called
entangled and exhibit the most quantumness.

In this Letter we study the quantumness of correlations
by combining a measure of total correlations—mutual
information (MI)—and the notion of broadcast copies,
i.e., generally nonfactorized copies (see Fig. 1) of a bipar-
tite quantum state. We relate quantumness to monogamy of
correlations, and, in particular, to monogamy of entangle-
ment, which in standard terms refers to the impossibility of
a system to be strongly entangled with two or more other
systems at the same time [7]. Here, we adopt a different

perspective by considering broadcast copies, and analyze
quantitatively the minimal growth of the correlations with
the number of broadcast copies. Whereas for factorized
copies the correlations increase linearly for all states, this is
not true for nonfactorized copies. Indeed, CC state corre-
lations do not have to increase at all and can be freely
shared among any number of broadcast copies. We show
that for non-CC separable states there is actually an in-
crease, but it is bounded, while for entangled states the
correlations must increase linearly with the copies, a result
we term copy-copy monogamy of entanglement. This is
better expressed in quantitative terms by introducing the
broadcast regularization of MI, the minimal per-copy MI
between parties, when they share an infinite amount of
broadcast copies. We show that this quantity has many
properties of an entanglement measure [8], we establish
relations with known entanglement measure, and we con-
jecture that it is an entanglement measure itself. We then
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FIG. 1. n copies of a bipartite state �AB: broadcast copies (left)
and factorized copies (right). Solid lines connecting subsystems
symbolize correlations. The vertical dashed line indicates the
bipartite cut across which correlations are quantified by mutual
information.
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restrict the minimization to permutationally invariant
broadcast copies and prove that the corresponding con-
strained broadcast regularization of MI equals the classical
version of squashed entanglement [9].

Broadcast copies and mutual information.—In [2] the
quantumness of correlations of a bipartite state �AB on
Hilbert space H A �H B was addressed from an opera-
tional point of view by employing the notion of broadcast
copies and by quantifying total correlations by means of
MI. The MI of a state � � �AB is defined as Ið�Þ �
IðA:BÞ� � SðAÞ� þ SðBÞ� � SðABÞ�, with SðXÞ� �
�Tr�Xlog2�X the von Neumann entropy of subsystem X
when the state of the total system is � [10]. We say that a

state �ðnÞ
Xn , Xn � X1; . . . ; Xnis an n-copy broadcast state of

� if �ðnÞ
Xk

� TrX1���Xk�1Xkþ1���Xn
�ðnÞ ¼ � for all k. Each sys-

tem Xk may be composed of subsystems, in our case Xk ¼
AkBk. Broadcast copies may contain correlations among
the different copies, in contrast to factorized copies ��n

X

(Fig. 1). For example, given any mixed ensemble
fðpk; �

k
ABÞg for �AB, i.e. �AB ¼ P

kpk�
k
AB, the convex com-

bination of factorized states �ðnÞ½fðpk; �
k
ABÞg� �

P
kpk�

k�n
AB

is a possible n-copy broadcast state of �AB. Such states are
also known as de Finetti states and play an important role
in quantum versions of de Finetti’s theorem [11,12]. By
combining MI and the notion of broadcast copies, we can
define the n-copy broadcast MI of �AB as

ðIbÞnð�ABÞ � min
�ðnÞ

IðAn:BnÞ�ðnÞ ;

where the minimum is taken over all n-copy broadcast

states �ðnÞ
AnBn of �AB. A broadcast copy ��ðnÞ such that

Ið ��ðnÞÞ ¼ ðIbÞnð�ABÞ will be said to be optimal [13]. In
[2] a no-local-broadcasting theorem for quantum correla-
tions was derived by proving that for non-CC states—even
separable ones—one has ðIbÞnð�ABÞ> Ið�ABÞ, for n � 2.
This suggests that the quantumness of the correlations
present in �AB may be revealed by the dependence of
ðIbÞnð�ABÞ on the number of broadcast copies n [14]. We
will particularly focus on its behavior for large n, as given
by the broadcast regularization of MI [15]

Ið1Þ
b ð�ABÞ � lim

n

1

n
min
�ðnÞ

IðAn:BnÞ�ðnÞ :

In the following theorem we formalize the intuition that
classical correlations can be freely shared among the
broadcast copies, while quantum correlations can not.

Theorem 1.—The n-copy broadcast MI ðIbÞn as a func-
tion of n: (i) is constant for CC states; (ii) grows (strictly
from one to two copies) but is bounded for separable states
that are not CC states; (iii) grows strictly and asymptoti-
cally linearly for all entangled states.

Proof.—(ii) By definition, given any mixed ensemble
realization fðpk; �

k
ABÞg of �AB, we have ðIbÞnð�ABÞ�

Ið�ðnÞ½fðpk;�
k
ABÞg�Þ. For separable states one may choose

an ensemble with �k
AB ¼ �k

A � �k
B, for all k. Then, inde-

pendently of the number of copies n, Ið�ðnÞ½fðpk; �
k
A �

�k
BÞg�Þ � SðfpkgÞ. In the separable non-CC case, the strict

growth from n ¼ 1 to n ¼ 2 of ðIbÞn was proved in [2].
(i) For CC states, one can relabel k ¼ ði; jÞ and set

�k
AB � jiAihiAj � jjBihjBj, so that Ið�ABÞ ¼ ðIbÞn �

ð�ABÞ ¼ Ið�ðnÞ½fðpij; jiAihiAj � jjBihjBjÞg�Þ ¼ IðfpijgÞ [16]

which is a constant independent of n. (iii) By definition,

Ið1Þ
b ¼ limn

1
n ðIbÞn, therefore ðIbÞn � nIð1Þ

b [17]. The claim

follows then from the statement that Ið1Þ
b is strictly positive

for all entangled states (Lemma 1 below). j

Properties of Ið1Þ
b .—The next theorem establishes many

of the properties of Ið1Þ
b .

Theorem 2.—The broadcast regularization of MI Ið1Þ
b is:

(i) zero for separable states; (ii) convex; (iii) monotone
under local operations: Iðð�A ��BÞ½�AB�Þ � Ið�ABÞ, for
completely positive trace-preserving maps �A and �B;

(iv) subadditive: Ið1Þ
b ð�AB � �A0B0 Þ � Ið1Þ

b ð�ABÞ þ
Ið1Þ
b ð�A0B0 Þ; (v) weakly additive: Ið1Þ

b ð��m
AB Þ ¼ mIð1Þ

b ð�ABÞ;
(vi) asymptotically continuous: for � � k�AB � �ABk1 <
ð 221Þ2, kXk1 ¼ Tr

ffiffiffiffiffiffiffiffiffiffi
XyX

p
, one has jIð1Þ

b ð�ABÞ �
Ið1Þ
b ð�A0B0 Þj � 126

ffiffiffi
�

p
log2dþ 6hð212

ffiffiffi
�

p Þ, with hðxÞ ¼
�xlog2x� ð1� xÞlog2ð1� xÞ and d the dimension of AB.
Proof.—(i) is a consequence of Theorem 1. (ii) is proved

by noting that for optimal broadcast copies ��ðnÞ
i of

�i: ðIbÞnðPipi�iÞ� IðPipi ��
ðnÞ
i Þ�P

ipiðIbÞnð�iÞþSðfpigÞ.
(iii) derives from the fact that if ��ðnÞ is an optimal broadcast

copy for �, then ð��n
A ���n

B Þ½ ��ðnÞ� is a broadcast copy

of ð�A ��BÞ½�AB� and ðIbÞnðð�A ��BÞ½�AB�Þ �
Iðð��n

A ���n
B Þ½ ��ðnÞ�Þ � Ið ��ðnÞÞ ¼ ðIbÞnð�Þ. (iv) follows

from the additivity of MI: ðIbÞnð� � �Þ � Ið ��ðnÞ � ��ðnÞÞ ¼
ðIbÞnð�Þ þ ðIbÞnð�Þ, for ��ðnÞ and ��ðnÞ optimal broadcast
copies of � and �, respectively. Given subadditivity, in

order to prove (v) it is sufficient to observe that Ið1Þ
b ð��kÞ ¼

limm
1
m ðIbÞmð��kÞ � klimm

1
mk ðIbÞmkð�Þ ¼ kIð1Þ

b ð�Þ. The

proof of (vi) is relatively technical and will be reported
elsewhere [18]. The main idea is to first prove that for any
�X, �X, � � k�X � �Xk1 < 1, there exist a quantum op-
eration �X � �Xð�;�Þ such that: (a) �X½�X� ¼ �X, and
(b) for any extension �XY satisfying �X ¼ �X, kð�X �
1YÞ½�XY� � �XYk � 21

2

ffiffiffi
�

p
. Thus, if �ðnÞ is a broadcast

copy of �, there exist � such that �ðnÞ ¼ ��n½�ðnÞ� is a
broadcast copy of � with comparable MI. j

According to Theorem 2, Ið1Þ
b has many of the properties

of an entanglement measure [8], and we conjecture that it
really is an entanglement monotone, i.e., that it decreases
(on average) under LOCC.
Relation to entanglement measures.—A way to prove

that Ið1Þ
b > 0 for all entangled states is suggested by

noting the relation of Ið1Þ
b to known entanglement mea-

sures [9,19–21]: squashed entanglement EQ
sqð�ABÞ �

1
2 inf�ABE

ðIðA:BEÞ� � IðA:EÞ�Þ, where the infimum is over

all extensions �ABE of �AB, i.e., states �ABE satisfying
TrEð�ABEÞ ¼ �AB; conditional entanglement of MI
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(CEMI) EIð�ABÞ � 1
2 inf�ABA0B0 ðIðAA0:BB0Þ� � IðA0:B0Þ�Þ,

with the infimum over extensions of �AB; classical

squashed entanglement EC
sqð�ABÞ � 1

2 min�ABÊ
ðIðA:BÊÞ� �

IðA:ÊÞ�Þ, where the minimum is over all extensions �ABÊ

of �AB that are classical on Ê, i.e. �ABÊ ¼ P
kpk�

k
AB �

jkihkjÊ. Squashed entanglement and CEMI obey EI �
EQ
sq, and have an operational interpretation as minimal

quantum communication costs in quantum state redistri-
bution [20,21].

By the definition of EIð�ABÞ, it holds IðAA0:BB0Þ� �
2EIð�ABÞ þ IðA0:B0Þ� for any extension �AA0BB0 of �AB.

Therefore, given an n-copy broadcast state �ðnÞ
AB, by us-

ing recursively the broadcast condition one obtains
ðIbÞnð�ABÞ � 2nEIð�ABÞ. By dividing both sides of this

inequality by n and taking the limit n!1, we get Ið1Þ
b �

2EI. Nonetheless, neither EI nor EQ
sq are known to be

strictly positive for all entangled states, in particular, be-
cause the extending systems in the definitions may have
any dimension. Interestingly, thanks to the classicality of
the extension, EC

sq has a finite-dimensional optimal exten-

sion Ê and is thus known to be strictly positive for all
entangled states [9].

In order to find good lower bounds on Ið1Þ
b we consider

the classical MI associated to a bipartite state quantum
�AB [22], defined as ICð�ABÞ � maxfMi�NjgIðfpijð�ABÞgÞ.
The maximum is taken with respect to all local POVMs
Mi � 0,

P
iMi ¼ 1 (acting on system A) and Nj � 0,P

iNj ¼ 1, (acting on system B), respectively, and

pijð�Þ ¼ TrðMi � Nj�Þ. As MI decreases under local mea-

surements, ICð�ABÞ � Ið�ABÞ, with equality if and only if
the state �AB is CC [2]. Similar to EI we define:

EICð�ABÞ � inf
�
ðICðAA0:BB0Þ� � ICðA0:B0Þ�Þ;

with � � �ABA0B0 an extension of �AB. EIC measures the

minimal increase in classical correlations due to ‘‘adding’’
two systems AB in the state �AB to arbitrary ancillas A0B0.
The following lemma proves that EICð�ABÞ> 0 if and only

if �AB is entangled: entanglement and only entanglement
implies a higher amount of classical correlations.

Furthermore, the lemma relates Ið1Þ
b and EIC and completes

the proof of Theorem 1.

Lemma 1.—It holds that (i) Ið1Þ
b � EIC , and that (ii) EIC

vanishes for and only for separable states.

Proof.—(i) For any n-copy broadcast state �ðnÞ of �, we
have Ið�ðnÞÞ � ICð�ðnÞÞ � nEICð�Þ, where we used again

the broadcast condition and the definition of EIC . Thus,

Ið1Þ
b � ðICÞð1Þ

b � EIC . (ii) The latter relations prove that EIC

vanishes for separable states. In order to prove strict pos-
itivity on entangled states, consider any extension �ABA0B0

of a state �AB. The optimal local measurements for
ICð�ABA0B0 Þ in general act jointly on AA0 and BB0. Let us
restrict ourselves to measurements fM0

kg and fN0
lg on A0 and

B0 that attain the maximum in ICð�A0B0 Þ, and optimize
solely over POVMs fMig and fNjg on A and B. Thus, as

in the first part of the proof of Theorem 3 in [2], by using
the definition of MI and the concavity of entropy we find
ICð�ABA0B0 Þ � ICð�A0B0 Þ � supfMi�Njg

P
kl qklIðfpijð�kl

ABÞgÞ,
with qkl � Trð�A0B0M0

k � N0
lÞ and �kl

AB ¼
TrA0B0 ð�ABA0B0M0

k � N0
lÞ=qklð�A0B0 Þ. We now recall that MI

can be expressed as relative entropy (see [16]).
Furthermore, pA

i ð�kl
ABÞ �

P
jpijð�kl

ABÞ ¼ TrAðMi�
kl
A Þ, with

�kl
A ¼ TrBð�kl

ABÞ [similarly for pB
j ð�kl

ABÞ]. Thus, we find

sup
fMi�Njg

X
kl

qklIðfpijð�kl
ABÞgÞ � sup

fMi�Njg
S

�
fpijð�ABÞg

�����
�
pij

�X
kl

qkl�
kl
A � �kl

B

���
� inf

�ABseparable
sup

fMi�Njg
Sðfpijð�ABÞgjjfpijð�ABÞgÞ;

where we used the joint convexity of relative entropy, the
fact that

P
klqkl�

kl
AB ¼ �AB, as well as the separability ofP

klqkl�
kl
A � �kl

B . This lower bound is independent of
�ABA0B0 and is strictly positive for all entangled states,
because there exist informationally complete local
POVMs [23] and the relative entropy vanishes only when
the two probability distributions are equal. j

The next theorem formalizes the relation of Ið1Þ
b with the

mentioned entanglement measures.
Theorem 3.—We have the sequence of inequalities:

2EC
sq � 2ðEC

sqÞð1Þ � Ið1Þ
b � 2EI � 2EQ

sq: (1)

Proof.—The two rightmost inequalities have already
been discussed. The first inequality is due to subadditivity

ofEC
sq. The inequality 2E

C
sq� Ið1Þ

b is proved by noticing that

EC
sq corresponds to EC

sqð�ABÞ ¼ 1
2 minfðpk;�

k
AB
Þg
P

k pkIð�k
ABÞ,

with the minimum over mixed ensembles for �AB [9].

By choosing an ensemble fð �pk; ��
k
ABÞg optimal for EC

sq,

and using additivity of MI, one finds ðIbÞnð�ABÞ �
Ið�ðnÞ½fð �pk; ��k

ABÞg�Þ � n
P

k �pkIð ��k
ABÞ þ Sðf �pkgÞ ¼

2nEC
sqð�ABÞ þ Sðf �pkgÞ. The second inequality in (1) is

obtained by the standard regularization of both sides of

2EC
sq � Ið1Þ

b . j

Theorem 3 together with Lemma 1, provides a new
proof that the entanglement cost Ec—the rate at which
one has to consume pure entanglement to create many
copies of a given state via LOCC—is strictly positive for
all entangled states [24]. Indeed, by using the formula for

Ec of [25], one easily checks that Ec � ðEC
sqÞð1Þ.

Finally, we notice that one may define a variant of Ið1Þ
b

by considering broadcast copies only in the class of

permutation-invariant states, that is, states �ðnÞ
AnBn satisfying

�ðnÞ
AnBn ¼ ��ðnÞ

AnBn��1, for all permutations � of the n pairs

AiBi. Thus, we define the symmetrical broadcast regulari-
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zation of MI as:

Ið1Þ
b;symð�ABÞ � lim

n

1

n
min

�ðnÞperm-inv
IðAn:BnÞ�ðnÞ :

For such a quantity we are able to establish the following.

Theorem 4.—Ið1Þ
b;sym ¼ 2EC

sq, i.e., symmetric copies of the

form �ðnÞ½fðpk; �
k
ABÞg� are asymptotically optimal.

This theorem can be interpreted as support for our con-

jecture, since it implies that the symmetric version of Ið1Þ
b

is an entanglement monotone.
By Theorem 3 it suffices to prove the direction ‘‘�’’.

The intuition is that permutation-invariant states can be
approximated by de Finetti states [11,12]. This idea can be
made precise with the help of the so-called exponential
de Finetti theorem, in particular, by showing that entropy is
‘‘robust’’ under the disturbance of a small number of
subsystems [11] (see [18] for details).

Lemma 2.—Let �AnBn be a permutation-invariant state on
ðH A �H BÞ�n. Then there exists an ensemble of states
fðpi; �

i
ABÞg, where �i

AB are states on H A �H B, such that
SðXnÞ�AnBn

¼ n
P

ipiSðXÞ�i
AB
þ oðnÞ, for X ¼ A, B, AB,

and k�AB �P
ipi�

i
ABk1 ¼ oð1Þ, with the reduced state

�AB ¼ �AkBk
, k ¼ 1; . . . ; n.

Theorem 4 follows because for any permutation-

invariant broadcast copy �ðnÞ of �, the continuity of EC
sq

[9] and Lemma 2 assure the existence of an ensemble

fðpi; �
AB
i Þg such that Ið�ðnÞ½fðpi; �

AB
i Þg�Þ � Ið�ðnÞÞ þ oðnÞ.

Conclusions.—In this Letter, we have introduced a new
way of quantifying the quantumness of correlations. This
led us to define a new correlation measure, the broadcast
regularization of mutual information. Its strict positivity on
and only on entangled states can be interpreted as a sig-
nature of the monogamy of entanglement for any entangled
state. Our study furthermore reveals a novel relation be-
tween extensions—here broadcast extensions—and entan-
glement, a topic of practical interest [26].

Focus has been on correlations between two parties. As
in [2], our results can be straightforwardly extended to the
multipartite case if a suitable definition of multipartite
mutual information is adopted.

We thank M. Horodecki, R. Renner, and B. Toner for
discussions. This work began when M. P. received support
at the University of Innsbruck from the Austrian Science
Fund (FWF) through the Lise Meitner program. We ac-
knowledge support by QuantumWorks and Ontario Centres
of Excellence (M. P. and C.M.); by the Excellence
Network of Bavaria (TMP, QCCC) and the SFB 1388 of
the German Science Foundation (M. C.); by EU IP SCALA
and the LFPPI network (P. H.).

[1] H. Ollivier and W.H. Zurek, Phys. Rev. Lett. 88, 017901
(2001); L. Henderson and V. Vedral, J. Phys. A 34, 6899
(2001); J. Oppenheim et al., Phys. Rev. Lett. 89, 180402
(2002); M. Horodecki et al., Phys. Rev. A 71, 062307

(2005); B. Groisman et al., Phys. Rev. A 72, 032317

(2005); B. Groisman et al., arXiv:quant-ph/0703103; N.

Li and S. Luo, Phys. Rev. A 76, 032327 (2007).
[2] M. Piani et al., Phys. Rev. Lett. 100, 090502 (2008).
[3] R. Horodecki et al., Rev. Mod. Phys. 81, 865 (2009).
[4] M.A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,

Cambridge, England, 2000).
[5] M. Curty et al., Phys. Rev. Lett. 92, 217903 (2004).
[6] E. Knill and R. Laflamme, Phys. Rev. Lett. 81, 5672

(1998); A. Datta et al., Phys. Rev. A 72, 042316 (2005);

A. Datta et al., Phys. Rev. Lett. 100, 050502 (2008).
[7] V. Coffman et al., Phys. Rev. A 61, 052306 (2000).
[8] M. B. Plenio and S. Virmani, Quantum Inf. Comput. 7, 1

(2007).
[9] D. Yang et al., arXiv:0704.2236.
[10] MI is a fundamental measure of correlations (see [1] and

references therein) that: does not increase under local

operations; is neither convex nor concave, but respects

IðPkpk�
k
ABÞ �

P
kpkIð�k

ABÞ þ SðfpkgÞ, with SðfpkgÞ �
�P

kpklog2pk the Shannon entropy of the classical proba-

bility distribution fpkg; is additive: Ið�A1B1
� �A2B2

Þ ¼
Ið�A1B1

Þ þ Ið�A2B2
Þ.

[11] R. Renner, Nature Phys. 3, 645 (2007); R. Renner,

Ph.D. thesis, 2005, arXiv:quant-ph/0512258; R. König

and G. Mitchison, J. Math. Phys. (N.Y.) 50, 012105

(2009).
[12] E. Størmer, J. Funct. Anal. 3, 48 (1969); R. L. Hudson and

G. R. Moody, Z. Wahrscheinlichkeitstheor. verw. Geb. 33,
343 (1976); C.M. Caves et al., J. Math. Phys. (N.Y.) 43,
4537 (2002); R. König and R. Renner, J. Math. Phys.

(N.Y.) 46, 122108 (2005); M. Christandl et al., Commun.

Math. Phys. 273, 473 (2007).
[13] As the set of n-copy broadcast states is compact, there

exist optimal broadcast copies.
[14] Notice that Ið�ABÞ � ðIbÞnð�ABÞ � Ið��n

ABÞ ¼ nIð�ABÞ.
[15] The broadcast regularization of any state-dependent real

function f will be denoted by fð1Þ
b . The standard regulari-

zation fð1Þ is defined as fð1Þð�ABÞ � limn
1
n fð��n

ABÞ. For
MI, one has trivially Ið1Þ ¼ I.

[16] Here, IðfpAB
ij gÞ � SðfpA

i gÞ þ SðfpB
j gÞ � SðfpAB

ij gÞ �
SðfpAB

ij g k fpA
i p

B
j gÞ is the classical MI of the joint proba-

bility distribution fpAB
ij g with marginal distributions pA

i ¼P
jp

AB
ij (similarly for B). Sðfpkg k fqkgÞ � �P

kpklog2
qk
pk

is the Kullback-Leibler distance between two probability

distributions fpkg and fqkg.
[17] Take an optimal broadcast copy ��ðnÞ. Then ðIbÞnð�Þ ¼

nðIðð ��ðnÞÞ�kÞ=nkÞ � n ðIbÞnkð�Þ
nk , and taking the limit

k ! 1 proves the claim.
[18] M. Piani, M. Christandl, C. E. Mora, and P. Horodecki (to

be published).
[19] M. Christandl and A. Winter, J. Math. Phys. (N.Y.) 45, 829

(2004).
[20] J. Oppenheim, arXiv:0801.0458.
[21] D. Yang et al., Phys. Rev. Lett. 101, 140501 (2008).
[22] B. Terhal et al., J. Math. Phys. (N.Y.) 43, 4286 (2002).
[23] C.M. Caves et al., J. Math. Phys. (N.Y.) 43, 4537 (2002).
[24] D. Yang et al., Phys. Rev. Lett. 95, 190501 (2005).
[25] P.M. Hayden et al., J. Phys. A 34, 6891 (2001).
[26] G. O. Myhr et al., arXiv:0812.3607; A. C. Doherty et al.,

Phys. Rev. A 69, 022308 (2004).

PRL 102, 250503 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
26 JUNE 2009

250503-4


