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We prove that every entangled state is useful as a resource for the problem of minimum-error channel

discrimination. More specifically, given a single copy of an arbitrary bipartite entangled state, it holds that

there is an instance of a quantum channel discrimination task for which this state allows for a correct

discrimination with strictly higher probability than every separable state.
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Despite its sometimes counterintuitive properties, en-
tanglement has firmly been established as a fundamental
resource at the core of quantum information theory.
Universal quantum computation is generally believed to
be impossible in its absence [1], and it plays a principal
role in quantum teleportation [2], superdense coding [3],
and the one-way model of quantum computation [4]. The
classification of entanglement with respect to its usefulness
and properties as a resource is a major focus in the theory
of quantum information. For example, distillable entangle-
ment [5] may be processed by means of local operations
and classical communication into a nearly pure form that is
suitable for high fidelity quantum teleportation, while
bound entanglement cannot [6]. Other classifications of
entangled states, such as those that allow or do not allow
superdense coding [7,8], and those from which private
shared randomness can be extracted [9], have also been
studied.

Although entanglement is known to be useful in several
quantum information-theoretic settings, there are very few
known results that establish the usefulness of every en-
tangled state, irrespective of the ‘‘quality’’ of its entangle-
ment and of the dimensionality of its underlying systems.
The only prior examples that we are aware of involve a
type of activation mechanism, where the usefulness of a
given entangled state is based on its pairing with another
entangled state. For example, in [10] it was proved that for
any entangled state, there exists another entangled state
such that the fidelity of conclusive teleportation [11] of the
latter is enhanced by the presence of the former. A different
property holding for all entangled states that has a similar
character was proved in [12].

In this Letter we demonstrate that every entangled state
is useful as a resource for the task of channel discrimina-
tion. In this task, two known discrete physical processes (or
channels) are fixed, and access to one of them is made
available—but it is not known which one it is, and only a
single application of the channel is possible. The goal is to
determine, with minimal probability of error, which of the
two channels was given, assuming for simplicity that the

two channels were equally likely. The most general ap-
proach to solving an instance of this problem is to prepare a
(possibly entangled) bipartite probe-ancilla quantum state,
to apply the given channel to one part of this state—the
probe—and finally to measure the resulting bipartite state
by a POVM with two outcomes that correspond to predic-
tions of which channel was given.
It is well-known that probe-ancilla entanglement is

sometimes useful for channel discrimination. This phe-
nomenon seems to have been identified first by Kitaev
[13], who introduced the diamond norm on superoperators
to deal with precisely this phenomenon in the context of
quantum error correction and fault tolerance [14].
Subsequent work [16–26] by several researchers further
illuminated the usefulness of entanglement in the problem
of channel discrimination and related tasks. In these works,
the focus has mainly been on identifying classes of channel
pairs for which some optimally chosen entangled state
either does or does not give an advantage over every
possible separable (or nonentangled) state.
In this Letter we reverse this question and suppose that

some arbitrary entangled state is given, and ask whether the
entanglement in this state is useful for channel discrimi-
nation. We prove that every bipartite entangled state indeed
does provide an advantage for this task: there necessarily
exists an instance of a channel discrimination problem for
which the entangled state allows for a correct discrimina-
tion with strictly higher probability than every possible
separable state. This holds even for a single copy of the
entangled state, regardless of its dimensionality or the
quality or type of its entanglement (including, for instance,
bound entangled states), and does not require the presence
of an auxiliary state. This fact is proved below after brief
discussions of notation, terminology, and background in-
formation on the problem of channel discrimination.
Notation and terminology.—For a given (finite dimen-

sional) Hilbert space X, the set of linear operators taking
the form A: X ! X is denoted by LðXÞ. We will denote
by 1Z the identity operator on Z and by 1LðZÞ the identity
superoperator on LðZÞ. An operator � 2 LðXÞ is a density
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operator, and represents a state, if it is positive semidefinite
(� � 0) and has unit trace (Trð�Þ ¼ 1). The set of such
density operators is denotedDðXÞ. A state� 2 DðX �ZÞ
of a bipartite system is said to be separable if it takes the
form � ¼ �sep ¼ P

ipi�
i
X � �i

Z for density operators

f�i
Xg and f�i

Zg on the Hilbert spaces X and Z, respec-

tively, and fpig a probability distribution, and otherwise is
entangled. The set of all separable states is denoted
SepðX:ZÞ. The trace norm of an operator A is defined as

kAktr � Tr
ffiffiffiffiffiffiffiffiffi
AyA

p
[27]. The trace distance between two

states �0 and �1 is k�0 � �1ktr.
Channels are particular elements of the set of linear

superoperators TðX;YÞ � f�j�:LðXÞ ! LðYÞg that
map operators on a Hilbert space X into operators on a
(possibly different) Hilbert space Y. A superoperator� 2
TðX;YÞ is said to be (i)Hermiticity preserving if�½X�y ¼
�½Xy�, 8 X 2 LðXÞ; (ii) trace preserving if Trð�½X�Þ ¼
TrðXÞ, 8 X 2 LðXÞ; (iii) trace annihilating if
Trð�½X�Þ ¼ 0, 8 X 2 LðXÞ; (iv) positive if �½X� � 0
for every positive semidefinite operator LðXÞ 3 X � 0;
(v) completely positive if � � 1LðCnÞ is positive for all n;
(vi) a channel if it is both completely positive and trace
preserving; (vii) an entanglement-breaking channel if it is
a channel that destroys all entanglement: ð� � 1LðZÞÞ�
½�XZ� 2 SepðY:ZÞ for all states �XZ. A channel describes
any physical process which preserves probability, i.e., that
happens with certainty.

The Choi-Jamiołkowski representation [28,29] of a
superoperator � 2 TðX;YÞ is given by

Jð�Þ ¼ X

1�i;j�dX

�½jiihjj� � jiihjj 2 LðY �XÞ;

where dX and fj1i; . . . ; jdXig are the dimension and a fixed
orthonormal basis of X, respectively. The mapping
J: TðX;YÞ ! LðY �XÞ is a linear bijection, which im-
plies that for every operator A 2 LðY �XÞ there exists a
unique superoperator� 2 TðX;YÞ such that Jð�Þ ¼ A. It
holds that a superoperator � 2 TðX;YÞ is (i) Hermiticity
preserving if and only if Jð�Þy ¼ Jð�Þ [30]; (ii) trace
preserving if and only if TrYðJð�ÞÞ ¼ 1X; (iii) trace anni-

hilating if and only if TrYðJð�ÞÞ ¼ 0; (iv) completely

positive if and only if Jð�Þ � 0 [28,29]; (v) an
entanglement-breaking channel if and only if it is a channel
and Jð�Þ=dX 2 SepðY �XÞ [31].

State and channel discrimination.—The task of channel
discrimination is naturally related to the well-studied task
of discriminating states [32]. Suppose we are given one of
two known states �0, �1 2 DðXÞ, each with equal a priori
probability, and our goal is to guess which one it is with
minimal-error probability. A guessing procedure for this
task may be described by a two-outcome POVM
fM0;M1g � LðXÞ, M0, M1 � 0, M0 þM1 ¼ 1X. The er-
ror probability for such a measurement can be expressed as
pE ¼ 1=2ð1� 1=2Tr½ðM0 �M1Þð�0 � �1Þ�Þ. It may be
nonzero for every possible measurement, but by optimiz-
ing the measurement one reaches the minimum-error
probability pmin

E ¼ 1=2ð1� 1=2k�0 � �1ktrÞ [33].
Now, suppose we want to discriminate two channels�0,

�1 2 TðX;YÞ with minimal-error probability, as dis-
cussed above. By ‘‘probing’’ whichever channel was given
with a state � 2 DðXÞ, we transform the problem into one
of discriminating between the states �0½�� and �1½��.
Thus, the relevant quantity becomes k�0½�� ��1½��ktr,
and the minimal error will be achieved by choosing an
optimal input state that minimizes this quantity. In this way
we are led to consider the trace distance [34] of two
channels k�0 ��1ktr � max�k�0½�� ��1½��ktr. By

the convexity of the trace norm, this maximum will be
achieved for some pure input state.
As mentioned previously, however, the reduction from

channel to state discrimination just described may not
always be optimal, for it does not exploit the possibility
of feeding the channel with a subsystem of a larger corre-
lated system, and then measuring the resulting output joint
system. More precisely, we may consider an input state
� 2 DðX �ZÞ, with Z the Hilbert space of an arbitrary
ancillary system, and compare the output states ð�i �
1LðZÞÞ½��, for i ¼ 0, 1. Thus, the ultimate quantity relevant

in minimal-error channel discrimination is actually the
diamond norm [35]:

k�0 ��1k	 � sup
n�1

k�0 � 1LðCnÞ ��1 � 1LðCnÞktr:

By definition, it holds that k�0 ��1k	 � k�0 ��1ktr,
and if it is the case that k�0 ��1k	 > k�0 ��1ktr, then
it is necessarily because of entanglement. Indeed, the
correlations of separable states never help in the discrimi-
nation of channels, as for every separable state �sep 2
SepðX �ZÞ we have

kð�0�1LðZÞÞ½�sep��ð�1�1LðZÞÞ½�sep�ktr�
X

i

pikð�0��1Þ½�i
X���i

Zktr¼
X

i

pik�0½�i
X���1½�i

X�ktr�k�0��1ktr:

Proof of the main result.—To establish our main result,
we will connect the characterization of entanglement in
terms of positive linear maps with its usefulness for chan-
nel discrimination.

We begin with a lemma that can be considered an
improvement of Lemma 1 in [36]: the well-known charac-
terization of entanglement by positive maps proved in [37]
continues to hold if the extra constraint of trace-

preservation is placed on the positive maps. The improve-

ment of the following lemma lies in a significantly simpler

proof and in a better bound on the output dimension of the

positive maps.

Lemma 1.—A state � 2 DðX �ZÞ is entangled if and

only if there exists a positive, trace-preserving super-

operator �TP 2 TðX;YÞ such that
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ð�TP � 1LðZÞÞ½�� 6�0: (1)

It suffices to take dimY � dimZþ 1.
Proof.—In [37] it was proved that a state � 2 DðX �ZÞ

is entangled if and only if there exists a positive super-
operator � 2 TðX;ZÞ such that ð� � 1LðZÞÞ½�� 6�0. The
main issue that must be addressed is that the superoperator
� may not, in general, be trace preserving.

Let us define �ð�Þ � max� Trð�½��Þ, where the maxi-

mum is over all density operators � 2 DðXÞ, and consider
the normalized map �̂ � �=�ð�Þ. By construction, this

superoperator satisfies TrðXÞ � Trð�̂½X�Þ for all X � 0,

and so the map �TP 2 TðX;Z 
 CÞ defined as �TP½X� �
�̂½X� þ ðTrðXÞ � Trð�̂½X�ÞÞj0ih0j, where j0i is a normal-
ized vector orthogonal to Z, is also positive and satisfies
ð�TP � 1LðZÞÞ½�� 6�0. By taking Y ¼ Z 
 C and noticing

that �TP is trace-preserving, the proof is complete. j
It is helpful to note at this point that any positive and

trace-preserving superoperator�TP 2 TðX;YÞ allows one
to define, for every state � 2 DðX �ZÞ, a generalized
negativity [38,39] parameter as [40]

N�TP
ð�Þ � kð�TP � 1LðZÞÞ½��ktr � 1

2
¼ X

i: ri<0

jrij;

where frig is the set of eigenvalues of ð�TP � 1LðZÞÞ½��. Of
course, ð�TP � 1LðZÞÞ½�sep� � 0 and N�TP

ð�sepÞ ¼ 0, for

every separable state �sep 2 SepðX:ZÞ, while N�TP
ð�Þ>

0 if � is entangled and detected as in (1).
Next we will prove a lemma that relates a Hermiticity-

preserving, trace-annihilating superoperator—an appar-
ently abstract object—to the existence of two channels.

Lemma 2.—Let �TA 2 TðX;YÞ be a Hermiticity-
preserving, trace-annihilating superoperator. Then there
exist channels �0, �1 2 TðX;YÞ and a scalar c�TA

> 0

such that c�TA
�TA ¼ �0 ��1.

Proof.—Given that �TA is Hermiticity preserving and
trace annihilating, it holds that its Choi-Jamiołkowski rep-
resentation Jð�TAÞ is Hermitian and satisfies
TrYJð�TAÞ ¼ 0. Let Jð�TAÞ ¼ P0 � P1 be a Jordan de-

composition of Jð�TAÞ (meaning that P0, P1 � 0 and
TrðP0P1Þ ¼ 0), and note that TrYP0 ¼ TrYP1 ¼: Q � 0.

Take c�TA
¼ 1=kQk, so that c�TA

Q � 1X. Next, consider

any positive operator � 2 LðY �XÞ such that TrY�YX ¼
1X � c�TA

Q [41], and let �0, �1 2 TðX;YÞ be the

unique superoperators for which Jð�iÞ ¼ c�TA
Pi þ � for

i ¼ 0, 1. We have Jð�iÞ�0 and TrYðJð�iÞÞ ¼
c�TA

Qþ 1X � c�TA
Q ¼ 1X; therefore, �0, �1 are chan-

nels. Moreover, Jð�0Þ � Jð�1Þ ¼ c�TA
ðP0 � P1Þ ¼

c�TA
Jð�TAÞ, therefore �0 ��1 ¼ c�TA

�TA. j

We are now ready for the proof of the main theorem,
which will rely on the careful definition of a trace-
annihilating map—starting from a trace-preserving map
as in Lemma 1—and on the application of Lemma 2.
Theorem 1.—A state � 2 DðX �ZÞ is entangled if and

only if there exist channels �0, �1 2 TðX;YÞ such that

kð�0 � 1LðZÞÞ½�� � ð�1 � 1LðZÞÞ½��ktr > k�0 ��1ktr:
It suffices to take dimY � dimZþ 2.
Proof.—We have already argued that if � allows, for

some choice of channels �0, �1 a discrimination better
than the one corresponding to k�0 ��1ktr, then �must be
entangled. On the other hand, if � is entangled, then by
Lemma 1 there exists a positive, trace-preserving super-
operator �TP 2 TðX;W Þ such that N�TP

ð�Þ> 0. Let us

define a new map �TA 2 TðX;W 
 CÞ as �TA½X� �
�TP½X� � TrðXÞj0ih0j, where j0i is a normalized vector
orthogonal to W . By construction, �TA is Hermiticity
preserving and trace annihilating. By Lemma 2, there
exists a scalar c�TA

such that c�TA
�TA ¼ �0 ��1 for

two channels �0, �1 2 TðX;W 
 CÞ.
Now, for a generic state � 2 DðX �ZÞ, one finds

kðð�0 ��1Þ � 1LðZÞÞ½��ktr ¼ c�TA
kð�TA � 1LðZÞÞ½��ktr ¼ c�TA

kð�TP � 1LðZÞÞ½�� � j0ih0j � TrXð�Þktr
¼ c�TA

ð1þ kð�TP � 1LðZÞÞ½��ktrÞ ¼ 2c�TA
ð1þ N�TP

ð�ÞÞ:
For every separable state �sep 2 SepðX:ZÞ we obtain kðð�0 ��1Þ � 1LðZÞÞ½�sep�ktr ¼ 2c�TA

, and therefore
k�0 ��1ktr ¼ 2c�TA

. Thus,

kðð�0 ��1Þ � 1LðZÞÞ½��ktr � k�0 ��1ktr ¼ 2c�TA
N�TP

ð�Þ> 0:

According to Lemma 1 it is sufficient to have dimW �
dimZþ 1. Taking Y ¼ W 
 C shows that it is sufficient
to have dimY � dimZþ 2, and completes the proof. j

In regard to the type of channels that allow entangled
states to give improved discrimination, one has the follow-
ing interesting corollary.

Corollary 1.—A state � 2 DðX �ZÞ is entangled if and
only if there exist entanglement-breaking channels �0,
�1 2 TðX;YÞ such that

kð�0 � 1LðZÞÞ½�� � ð�1 � 1LðZÞÞ½��ktr > k�0 ��1ktr:

Proof.—Generalizing the result of [23], we observe that

if an entangled state � 2 DðX �ZÞ increases the distin-

guishability of two channels �0, �1 2 TðX;YÞ, then it

also increases the distinguishability of two entanglement-

breaking channels of the form�p
i ¼ p�i þ ð1� pÞ�, for

i ¼ 0, 1. Here p 2 ð0; 1� and � 2 TðX;YÞ is the totally

depolarizing channel �½X� ¼ ðTrðXÞ=dYÞ1Y.

For sufficiently small p > 0, the channels �p
i are en-

tanglement breaking, as their Choi-Jamiołkowski represen-
tations are separable by the existence of a ball containing
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only separable states around the maximally mixed
state [38]. It holds that kðð�p

0 ��p
1 Þ � 1LðZÞÞ½��ktr ¼

pkðð�0 ��1Þ � 1LðZÞÞ½��ktr and k�p
0 ��p

1ktr¼pk�0�
�1ktr; therefore, the state � enhances the distinguishability
of channels �p

0 , �
p
1 for all choices of p > 0. j

Example.—The steps in the proof of Theorem 1 are
constructive. In particular, while the value of the enhance-
ment in distinguishability depends on the particular state,
the channels that are better distinguished by means of the
states depend exclusively on the positive map �TP. We
further remark that, for any entangled state, there exist
tools to find a positive map that detects the state as en-
tangled [42]. Unfortunately, it is not likely that this can
efficiently be done [43,44].

The most well-known example of a positive linear
map that detects entanglement is transposition T: LðXÞ 3
X � XT 2 LðXÞ with respect to some fixed basis of X
[37,45]. For transposition one finds cT ¼ 2=ðdX þ 1Þ,
and channels �0, �1 2 TðX;X 
 CÞ, �0: X �

1
dXþ1 ððTrXÞ1X þ XTÞ, �1: X � 1

dXþ1 ððTrXÞð1X þ
2j0ih0jÞ � XTÞ, with j0i a normalized vector orthogonal
to X. Thus, for any state � 2 DðX �ZÞ, we obtain
kð�0 � 1LðZÞÞ½�� � ð�1 � 1LðZÞÞ½��ktr � k�0 ��1ktr ¼

4
dXþ1NTð�Þ, with NTð�Þ the standard negativity of �

[38,39].
Conclusions.—We have proved that any entangled state

is useful to distinguish some pair of (entanglement-
breaking) channels strictly better than what is possible by
means of a separable state in the minimum-error, single-
shot scenario. One may consider this result as a physically
meaningful interpretation of the characterization of en-
tangled states by means of positive, but not completely
positive linear maps [37]. We expect that our result will
stimulate further investigations on the role of entanglement
in the discrimination of physical processes.
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