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We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for three-

qubit pure states in the Greenberger-Horne-Zeilinger class. We consider a family of states known as the

generalized Greenberger-Horne-Zeilinger states and derive an analytical expression relating the three-

tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type in-

equality that is violated only when all three qubits are nonlocally correlated. We show that states with

three-tangle less than 1=2 do not violate the Svetlichny inequality. On the other hand, a set of states known

as the maximal slice states does violate the Svetlichny inequality, and exactly analogous to the two-qubit

case, the amount of violation is directly related to the degree of tripartite entanglement. We discuss further

interesting properties of the generalized Greenberger-Horne-Zeilinger and maximal slice states.
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Introduction.—Quantum theory allows correlations be-
tween spatially separated systems that are fundamentally
different from classical correlations. This difference be-
comes evident when entangled states violate Bell-type
inequalities [1] that place an upper bound on the correla-
tions compatible with local hidden-variable (or local real-
istic) theories. All pure entangled states of two qubits
violate the Bell-type Clauser-Horner-Shimony-Holt
(CHSH) inequality [2], and the amount of violation in-
creases with the degree of bipartite entanglement [3,4] in
the state. In this Letter, we generalize this two-qubit rela-
tionship to important three-qubit pure states in the
Greenberger-Horne-Zeilinger (GHZ) class [5]. We find
analytical expressions relating tripartite entanglement to
a Bell-type inequality formulated by Svetlichny [6] that
tests for tripartite nonlocal correlations, and we identify
unique nonlocal properties of certain states. Our work is
motivated not only by foundational implications [7] but
also by recent theoretical and experimental interest in
multiqubit entanglement and nonlocality for novel appli-
cations in quantum communication and quantum compu-
tation [8–12]. Nonlocal correlations of three or more
particles may also play an integral role in phase transitions
and criticality in many-body systems [10]. Furthermore,
our analysis allows the possibility of generalization to N
particles, which would provide new avenues for the under-
standing of many-body condensed matter, optical, and
atomic systems.

The study of Bell inequalities for three-qubit states is
complicated by the problem of distinguishing between
violations arising from two-qubit versus three-qubit corre-
lations [13,14]. We focus here on the Svetlichny inequality,

because its violation is a sufficient condition for the con-
firmation of genuine three-qubit nonlocal correlations [6].
We identify and discuss special nonlocal properties of two
subsets of the GHZ class [5]: the generalized GHZ
(GGHZ) states jc gi and the maximal slice (MS) states

jc si [15],
jc gi ¼ cos�1j000i þ sin�1j111i; (1)

jc si ¼ 1ffiffiffi
2

p fj000i þ j11iðcos�3j0i þ sin�3j1iÞg: (2)

These states have unique entanglement properties due their
inherent symmetries [15], which makes them interesting
candidates for information processing protocols. For in-
stance, the well-known GHZ state, common to both subsets
(�1 ¼ �=4, �3 ¼ �=2), has been prepared in different
physical systems and is a resource for various practical
applications [12].
Like other Bell-type inequalities, the Svetlichny in-

equality is defined in terms of the expectation value of a
Bell-type operator S that is bounded by the inequality
jhSij � 4 [6]. We show that the maximum expectation
value of S for the GGHZ and MS states is

Smaxðc gÞ ¼
8<
:
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ðc gÞ

q
; �ðc gÞ � 1=3

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðc gÞ

q
; �ðc gÞ � 1=3;

(3)

Smaxðc sÞ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðc sÞ

q
; (4)

where the three-tangle �ðc Þ quantifies tripartite entangle-
ment [16], with �ðc gÞ ¼ sin22�1 and �ðc sÞ ¼ sin2�3. Our
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results reveal interesting properties of the GGHZ and MS
states. For the GGHZ states, Smaxðc gÞ initially decreases

monotonically with �, and then increases for � > 1=3. The
Svetlichny inequality is only violated by GGHZ states with
� > 1=2. However, all MS states violate the Svetlichny
inequality, and Eq. (4) is exactly analogous to the well-
known two-qubit relationship between bipartite entangle-
ment and the CHSH inequality [3,4]. Our analysis shows
that within a particular three-parameter family that is
experimentally accessible, the MS states achieve the maxi-
mum possible value of Smax for a given �, while conversely,
the GGHZ states yield the minimum possible Smax. Our
expressions also provide a practical way to measure the
tripartite entanglement � via measurement of Smax, which
involves only local measurements of each qubit.

The three-tangle.—In order to facilitate the discussion of
our results, we first briefly describe the three-tangle �, a
measure of genuine tripartite entanglement [16] defined as

� ¼ C21ð23Þ � C212 � C213: (5)

C21ð23Þ measures the entanglement between qubit 1 and the

joint state of qubits 2 and 3. The concurrences C12 and C13
quantify bipartite entanglement between qubits 1 and 2 and
1 and 3, respectively (for further details see [17]). The
three-tangle is invariant under permutation of the indices 1,
2, and 3 and is bounded between 0 (for separable states)
and 1 (for the maximally entangled GHZ state). For GGHZ
states, C12 ¼ C13 ¼ 0 and hence �ðc gÞ ¼ C21ð23Þðc gÞ ¼
sin22�1. For MS states, C1ð23Þ ¼ 1, C12 ¼ cos2�3, and

C13 ¼ 0. So �ðc sÞ ¼ sin2�3.
Svetlichny’s inequality.—Bell-type inequalities based on

absolute local realism, where all three qubits are locally but
realistically correlated, fail to distinguish between bipartite
and tripartite nonlocality [13]. For instance, Mermin’s
inequality [18] is violated by biseparable states in which
two of the qubits are separable from the third [13,14], and
hence it cannot unambiguously identify genuine tripartite
nonlocality. Svetlichny therefore considered a hybrid
model of nonlocal-local realism [6] where two of the qubits
are nonlocally correlated, but are locally correlated to the
third. Suppose we have an ensemble of three spatially
separated qubits, and the measurements A ¼ ~a � ~�1 or

A0 ¼ ~a0 � ~�1 are performed on qubit 1, B ¼ ~b � ~�2 or B
0 ¼

~b0 � ~�2 on qubit 2, and C ¼ ~c � ~�3 or C
0 ¼ ~c0 � ~�3 on qubit

3, where ~a, ~a0, ~b, ~b0, and ~c, ~c0 are unit vectors and the ~�i are
spin projection operators that can be written in terms of the
Pauli matrices. The Svetlichny operator is defined as

S ¼ AðBK þ B0K0Þ þ A0ðBK0 � B0KÞ; (6)

where K ¼ Cþ C0 and K0 ¼ C� C0. If a theory is con-
sistent with a hybrid model of nonlocal-local realism, then

the expectation value for any three-qubit state is bounded
by Svetlichny’s inequality, jh�jSj�ij � Sð�Þ � 4, which
is maximally violated by the GHZ state [6]. By design, all
biseparable states satisfy the Svetlichny inequality.
Therefore it is only violated when all three qubits are
nonlocally correlated.
In order to find the maximum expectation value of S for

the three-qubit GGHZ states and MS states, we adapt the
technique used to derive the two-qubit result [4]. Let ~a ¼
ðsin�a cos�a; sin�a sin�a; cos�aÞ, and likewise define ~a0,
~b, ~b0, ~c, and ~c0. In addition, define unit vectors ~d and ~d0

such that ~bþ ~b0 ¼ 2 ~d cos� and ~b� ~b0 ¼ 2 ~d0 sin�. Thus

~d � ~d0 ¼ cos�d cos�d0 þ sin�d sin�d0 cosð�d ��d0 Þ ¼ 0:

(7)

Then setting D ¼ ~d � ~�2 and D
0 ¼ ~d0 � ~�2, the expectation

value of S [Eq. (6)] for a state j�i can be rewritten as

Sð�Þ ¼ 2j cos�hADCi þ sin�hAD0C0i þ sin�hA0D0Ci
� cos�hA0DC0ij

� 2jfhADCi2 þ hAD0C0i2g1=2
þ fhA0D0Ci2 þ hA0DC0i2g1=2j; (8)

where we have used the fact that

x cos�þ y sin� � ðx2 þ y2Þ1=2; (9)

with the equality holding when tan� ¼ y=x. All square
roots are taken to be positive. We now use Eq. (8) to obtain
the main results of the Letter.
The GGHZ states.—The first term in Eq. (8) with respect

to the GGHZ states gives

hc gjADCjc gi ¼ cos2�1 cos�a cos�d cos�c

þ sin2�1 sin�a sin�d sin�c cos�adc

� fcos22�1cos2�acos2�d
þ sin22�1sin

2�asin
2�dg1=2; (10)

where we have applied Eq. (9) with respect to �c,
and chosen cos2�adc � cos2ð�a þ�d þ�cÞ ¼ 1. Then
Eqs. (8) and (10) imply

Sðc gÞ � 2fcos22�1ðcos2�d þ cos2�d0 Þcos2�a
þ sin22�1ðsin2�d þ sin2�d0 Þsin2�ag1=2
þ 2fcos22�1ðcos2�d þ cos2�d0 Þcos2�a0
þ sin22�1ðsin2�d þ sin2�d0 Þsin2�a0 g1=2; (11)

which when maximized with respect to �a and �a0 gives

Sðc gÞ �
�
4 cos2�1ðcos2�d þ cos2�d0 Þ1=2; cos22�1ðcos2�d þ cos2�d0 Þ � sin22�1ðsin2�d þ sin2�d0 Þ
4 sin2�1ðsin2�d þ sin2�d0 Þ1=2; cos22�1ðcos2�d þ cos2�d0 Þ � sin22�1ðsin2�d þ sin2�d0 Þ: (12)

Here we have used the fact that
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xsin2�þ ycos2� �
�
y; x � y
x; x � y

; (13)

with the first inequality realized when � ¼ 0 or � and the
second when � ¼ �=2. Now using Eq. (7), the maximum
of cos2�d þ cos2�d0 is 1, while the maximum of sin2�d þ
sin2�d0 is 2. Inserting these values into Eq. (12) and using
�ðc gÞ ¼ sin22�1 yields the form of Eq. (3),

Sðc gÞ �
8<
:
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ðc gÞ

q
; �ðc gÞ � 1=3

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðc gÞ

q
; �ðc gÞ � 1=3:

(14)

The equality in Eq. (14), Smaxðc gÞ, is realized by the
following possible sets of unit vectors: for � � 1=3, ~a,
~a0, ~b, ~b0, and ~c are all aligned along ~z, and ~c0 is aligned
along �~z; for � � 1=3, all the measurement vectors lie in
the xy plane with�adc ¼ �ad0c0 ¼ �a0d0c ¼ 0,�a0dc0 ¼ �,
and �d ��d0 ¼ �=2. This change in the measurement
direction at � ¼ 1=3 produces a sharp change in
Smaxðc gÞ as illustrated in Fig. 1: as � is increased from 0
to 1=3, Smaxðc gÞ actually decreases, after which Smaxðc gÞ
monotonically increases with �. When � � 1=2, GGHZ
states do not violate Svetlichny’s inequality. Notice that the
nonviolation, however, does not prevent us from experi-
mentally measuring the entanglement of GGHZ states. To
do so, we can choose, for example, the unit vectors in the
xy plane identified earlier and experimentally measure the
expectation value of Sðc gÞ. For these measurement angles,
Sðc gÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðc gÞ

q
, from which we can compute the en-

tanglement �ðc gÞ. In the regime � � 1=3, the measured
value of Sðc gÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðc gÞ

q
is not the maximum possible

value, but this is not important if the goal is only to
measure the entanglement �ðc gÞ.

The GGHZ states belong to the three-parameter family,

jc 3i ¼ cos�1j000i þ sin�1j�1�2�3i; (15)

where j�1i ¼ j1i, j�2i ¼ cos�2j0i þ sin�2j1i, j�3i ¼
cos�3j0i þ sin�3j1i. These states are of interest because
they can be prepared in experiments starting with an input
of two entangled pairs of qubits [19]. Previous numerical
studies of jc 3i [20] established upper and lower bounds on
Smaxðc 3Þ for a given �ðc 3Þ,��������

1

16
S2maxðc 3Þ � 1

��������� �ðc 3Þ � 1

32
S2maxðc 3Þ: (16)

A comparison of Eq. (16) to Eq. (3) shows that Eq. (3)
coincides with the lower bound on Smaxðc 3Þ. Hence, the
GGHZ states have the minimum value of Smaxðc 3Þ for a
given amount of �ðc 3Þ (Fig. 1). We show below that the
MS states, which also belong to this family, can achieve the
upper bound and thus give the maximum possible value of
Smaxðc 3Þ for a given amount of �ðc 3Þ.
The MS states.—Consider the first term in Eq. (8) with

respect to the MS states jc si in Eq. (2),

hc sjADCjc si¼ cos�3 cos�acos�dfcos�3 cos�cþsin�3 cos�c sin�cg
þsin�a sin�dfcos�3 cos�adcos�cþsin�3 cos�adc sin�cg

� cos�3 cos�acos�dðcos2�3þsin2�3cos
2�cÞ1=2þsin�a sin�dðcos2�3cos2�adþsin2�3cos

2�adcÞ1=2
�fcos2�3cos2�dðcos2�3þsin2�3cos

2�cÞþsin2�dðcos2�3cos2�adþsin2�3cos
2�adcÞg1=2: (17)

The first inequality is obtained by the use of Eq. (9) to maximize the terms in parentheses individually with respect to �c,
and the second inequality is obtained by maximizing the first inequality with respect to �a. Inserting Eq. (17) (and similar
expressions for hAD0C0i, hA0D0Ci, and hA0DC0i) in the inequality in Eq. (8) and using the constraint in Eq. (7), we find a
turning point of Sðc sÞ at �d ��d0 ¼ �d ¼ �d0 ¼ �=2. Then from Eqs. (17) and (8),

Sðc sÞ � 2fðcos2�3cos2�ad þ sin2�3cos
2�adcÞ þ ðcos2�3cos2�ad0 þ sin2�3cos

2�ad0c0 Þg1=2
þ 2fðcos2�3cos2�a0d þ sin2�3cos

2�a0dc0 Þ þ ðcos2�3cos2�a0d0 þ sin2�3cos
2�a0d0cÞg1=2

� 4fcos2�3 þ 2sin2�3g1=2 ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðc sÞ

q
: (18)

The second inequality in Eq. (18) is obtained from the first by setting cos2�adc ¼ cos2�ad0c0 ¼ cos2�a0dc0 ¼ cos2�a0d0c ¼
1, and by noting that since �d ��d0 ¼ �=2, cos2�ad ¼ sin2�ad0 and cos2�a0d ¼ sin2�a0d0 . The final equality follows
from �ðc sÞ ¼ sin2�3, yielding the desired result of Eq. (4) for Smaxðc sÞ. The other turning point of Sðc sÞ at�d ��d0 ¼ 0
yields a lower value of Sðc sÞ, so the expression in Eq. (18) gives the global maximum. A set of measurement angles which
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FIG. 1 (color online). Dots show a plot of Eq. (3) for Smaxðc gÞ
versus � for the GGHZ states. Comparison to the numerical
bounds [20] of Eq. (16) (solid line) shows agreement with the
lower bound. Stars show a plot of Eq. (4) for Smaxðc sÞ versus �
for the MS states. Comparison to the numerical bounds [20] of
Eq. (16) (solid line) shows agreement with the upper bound.
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realizes Smaxðc sÞ [Eq. (4)] is �a ¼ �a0 ¼ �d ¼ �d0 ¼ �=2,
tan�c ¼ tan�c0 ¼

ffiffiffi
2

p
tan�3, �adc ¼ �ad0c0 ¼ �a0d0c ¼ 0,

�a0dc0 ¼ �, �c0 ¼ ��c ¼ �=4, �d ��d0 ¼ �=2.
Notice that the only difference between these angles and
the optimal measurement angles for the GGHZ states in the
regime � > 1=3 is that ~c and ~c0 do not lie in the xy plane.
Comparison of Eq. (4) to the numerical bounds in Eq. (16)
[20] shows that it corresponds to the upper bound on
Smaxðc 3Þ, confirming that this is the maximum possible
value of Sðc sÞ as a function of �. We note that the states
obtained by swapping the second and third qubits also
yield Smax as in Eq. (4).

From Eq. (4), it is clear that all MS states can violate the
Svetlichny inequality (Fig. 1). Furthermore, we can com-
pare Eq. (4) to the entanglement-nonlocality relationship

for two-qubit pure states j�i [3,4], CHSHmaxð�Þ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �12ð�Þp

. CHSHmaxð�Þ is the maximum expectation
value of the CHSH operator [2], and the tangle �12ð�Þ ¼
C212ð�Þ measures the amount of bipartite entanglement in
the state [16,17]. Equation (4) for the MS states is directly
analogous to this two-qubit result.

Our analysis shows that the nonlocal correlations in
GGHZ states and MS states appear to be quite different,
although they both belong to the GHZ class. Notice that for
the GGHZ states when �1 ¼ 0 in Eq. (1), we obtain a three-
qubit product state, whereas for the MS states, setting �3 ¼
0 in Eq. (2) yields a product of a maximally entangled state
of two qubits and the state j0i for the third qubit. As �1 and
�3 are increased, the GGHZ and MS states both become
tripartite entangled, but in different ways due to the differ-
ent initial states, thereby leading to the differences in
nonlocality seen in Eqs. (3) and (4).

Conclusion.—In summary, we have obtained useful but
surprising relationships between tripartite entanglement
and nonlocality for the GGHZ and MS states. Previous
studies [21,22] have found that the GGHZ states do not
violate any Bell inequality for � < 1=4. Here we have
shown that the regime of nonviolation is in fact much
larger (� < 1=2) for the Svetlichny inequality. What does
the nonviolation of Svetlichny’s inequality by some GGHZ
states mean? Perhaps their nonlocality will be revealed by
some other Bell-type inequality, unless one finds an ex-
plicit hidden-variable model which reproduces the corre-
lations in these states. An interesting topic of further study
is the connection between nonlocality and tripartite infor-
mation in GGHZ states as defined in [23]. Another ques-
tion of practical interest is the physical significance of the
fact that all MS states violate the Svetlichny inequality and
their possible usefulness for specific information process-

ing tasks. In future work, we plan to extend our analysis to
W-class states [5] and, more generally, to multipartite
nonlocality in an n-qubit system via a generalization of
the Svetlichny inequality [13,24].
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