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(Received 15 October 2008; published 18 June 2009)

We present a first-principles theory for the active nonlinear microrheology of colloidal model system;

for a constant external force on a spherical probe particle embedded in a dense host dispersion, neglecting

hydrodynamic interactions, we derive an exact expression for the friction. Within mode-coupling theory,

we discuss the threshold external force needed to delocalize the probe from a host glass, and its relation to

strong nonlinear velocity-force curves in a host fluid. Experimental microrheology data and simulations,

which we performed, are explained with a simplified model.
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Microrheology is a promising technique providing local
probes of the dynamics in a complex fluid [1]. Monitoring
the motion of a singled-out probe particle embedded in a
(dense) host fluid or gel, one addresses questions about the
microscopic origins of the host’s complex-fluid behavior
and, in particular, the link between microscopic mecha-
nisms and macroscopic properties amenable to conven-
tional rheology. This connection subtly depends on the
host, probe-bath interactions, and on the applied forces.
Active microrheology turns this into an advantage, at the
cost of requiring much better knowledge about the micro-
scopic processes [2]: applying a known force to the indi-
vidual particle, one explores the nonequilibrium and
usually nonlinear regime, providing detailed insight into
the structure-dynamics relationship, e.g., in cellular envi-
ronments [3] or close to the glass transition [4–6]. Laser
tweezers, magnetic, or surface-chemistry forces [7] pro-
vide experimental realizations achieving large forcing.

The external-force-velocity relations obtained in dense
suspensions reveal striking nonlinearities, induced by the
slow relaxation of the host. Leaving the linear-response
regime, a sudden strong increase in the velocity reveals the
strength required to pull free the probe from the (transient)
local neighbor cage, such that force-induced motion over-
rules structural relaxation. Recent theoretical progress
[8,9] notwithstanding, it remains to understand the non-
linear friction induced by the slow structural rearrange-
ments of host particles.

Here we develop a theory for active nonlinear microrhe-
ology in suspensions close to their glass transition, estab-
lishing the conceptual connection between micro- and
macrorheology, when (de)localization of the probe occurs,
and how the structure of the cage is distorted close to this
yielding point. We start from microscopic equations of
motion and relate the force-velocity relation of the probe,
by virtue of an exact Green-Kubo-like formula, to a
microscopic-force autocorrelation function. This can be
approximated through nonequilibrium tagged-particle den-
sity correlation functions, which in turn are calculated in

the framework of the mode-coupling theory of the glass
transition (MCT) [10]. For a hard-sphere (HS) suspension
with a pulled probe of similar size as the host particles, we
demonstrate that the theory predicts a delocalization
threshold force that explains the nonlinear response seen
in experiment and simulation.
We start from the many-body Smoluchowski equation

for the nonequilibrium distribution function �ðtÞ of a
system of N Brownian particles (positions ri) and a single
probe (labeled s), @t�ðtÞ ¼ ��ðtÞ. Subjecting only the
probe particle to a constant, homogeneous force Fex, the
Smoluchowski operator � ¼ �0 þ �� reads

� ¼ X

i¼1;...;N;s

@i � ðkBT@i � FiÞ=�i � ð@s � FexÞ=�s; (1)

where �� ¼ �ð@s � FexÞ=�s is the nonequilibrium term
describing active forcing, and �0 the equilibrium
time evolution. We neglect solvent-induced hydrodynamic
interactions and introduce Stokes friction coefficients for
host (�i¼1;...;N � �0) and probe (�s) particles. The Fi;s are

(potential) interaction forces among the particles.
To obtain nonequilibrium averages formed with the

force-dependent Smoluchowski operator, the integration-
through-transients (ITT) formalism [11] recasts Eq. (1):

�ðtÞ ¼ �eq � 1

kBT�s

Z t

0
dt0 exp½�t0�ðFex � FsÞ�eq; (2)

assuming equilibrium at t ¼ 0 and using ���eq ¼
ðFex � FsÞ=ðkBT�sÞ�eq. In particular, the microscopic fric-

tion coefficient �ðFexÞ, defined via the average stationary
velocity at given external force,

�hvsit!1 � �hvsi1 ¼ Fex; (3)

is found by using Eq. (2) to average the fluctuating probe
velocity vs ¼ ðFs þ FexÞ=�s:

� ¼ �s þ 1

3kBT

Z 1

0
dthFs exp½�irrðFexÞt�Fsieq: (4)

This formally exact relation provides the far-from-
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equilibrium response via a transient equilibrium-averaged
correlation function. ITT achieves that all following aver-
ages are equilibrium ones, denoted by h�i (now suppressing
the eq subscript). �irr is connected to the adjoint of � and
arises from a projection operator step to convert mobility
into friction [11,12]. Fex enters nonperturbatively into the
time dependence; neglecting this recovers linear response.

Following MCT, we assume that force fluctuations are
governed by collective and probe-particle density fluctua-
tions, %q ¼

P
N
i¼1 exp½iqri� and %s

q ¼ exp½iqrs�. We take it

that in the thermodynamic limit, the motion of the probe
has negligible impact on the bulk properties of the host,
and restrict wave numbers to a discrete grid neglecting
anomalous long distance correlations. Inserting a projector
P 2 / P

kp%
s
k%pih%s

k%p on both sides of the operator ex-

ponential in Eq. (4), because forces on the probe relax by
host particle rearrangements and probe motion, and split-
ting four-point density averages into dynamical density
correlators, �kðtÞ ¼ h%�k exp½�yt�%ki and �s

kðtÞ ¼h%s
�k exp½�yt�%s

ki, we arrive at [12]

hFs exp½�irrt�Fsi �
X

k

jkBTkSskj2
NSk

�s
kðtÞ��kðtÞ: (5)

Sk ¼ h%k%�ki=N and Ssk ¼ h%s
k%�ki are the equilib-

rium structure functions describing interactions among
probe and host particles. The approximate splitting
h%�k%

s
�k exp½�irrt�%k%

s
ki � Sk�

s
kðtÞ��kðtÞ generalizes

the MCT ansatz tested in equilibrium [13].
The probe correlator �s

qðtÞ is complex valued, as the

perturbed operator �y is non-Hermitian. This reflects
that the probe-density distribution is shifted by applica-
tion of an external force: while in equilibrium it is cen-
tered around the origin, the average position of the probe
moves, introducing a complex-valued phase factor in
�s

qðtÞ. Still, Eq. (5) maintains � 2 R due to the symmetry

�s�qðtÞ ¼ ð�s
qðtÞÞ�.

Equation (5) recasts the problem of calculating the probe
friction as one of calculating the transient correlation
functions of host and probe densities, capturing changes
in the host density around the probe. To this end, we
employ Zwanzig-Mori equations of motion obtained by
standard projection operator steps [10],

@t�
s
qðtÞ ¼ �!s

q;q�
s
qðtÞ �

Z t

0
dt0ms

qðt� t0Þ@t0�s
qðt0Þ; (6a)

closed by the MCT approximation generalizing Eq. (5) to
finite wave vectors,

ms
qðtÞ ¼ kBT

�s!
s
q;q

X

kþp¼q

1

NSp
V s

qkpV
s;y
qkp�

s
kðtÞ�pðtÞ: (6b)

Again, the physical idea in the approximation is that the
friction kernelms

qðtÞ relaxes by both probe and host density
dynamics. The coupling coefficients are V s

qkp ¼ ðqpÞSsp,
V s;y

qkp ¼ !s
q;pS

s
p, where !s

q;p ¼ ðqkBT � iFexÞ � p=�s. An

analogous set of equations holds for �qðtÞ. Since the

external force acts on the probe only, the �qðtÞ are in

fact determined by the unperturbed Smoluchowski opera-
tor �0, resulting in the standard MCT scenario of glassy
dynamics [10,12,14]. This describes arrest driven by wave
vectors connected with a typical host particle radius a.
Thus the dimensionless parameter measuring the effect
of the external force is aFex=ðkBTÞ, the work required to
pull the probe over that distance in relation to thermal
energy.
The macroscopic counterpart to the friction � is the

dispersion viscosity � measured in bulk flow. Within
ITT, the analog to Eq. (4) holds for the latter [15]. MCT
expresses this as a functional only of the host correlators
�qðtÞ, while in Eq. (5), the probe correlators�s

qðtÞ enter. In
linear response close to the glass transition, identical scal-
ing laws for both closely link micro- and macrorheology
[16]. For large external forces, this correspondence
breaks: Eqs. (6) for the probe correlator contain a novel
delocalization transition that is absent in �qðtÞ. A probe

arrested in a glassy host suspension remains localized
in its (deformed) nearest-neighbor cage [described by
fsq ¼ �s

qðt ! 1Þ> 0], yielding zero average velocity (in-

finite friction) only below a finite threshold Fex
c . At larger

force, the probe is pulled free (fsq ¼ 0) and attains a steady

velocity (finite friction) at long times. In the liquid, cages
are transient, and a remnant of the threshold survives as a
sudden sharp ‘‘force thinning’’ in �ðFexÞ.
The details of the delocalization transition depend on the

host properties, which we model now as hard spheres using
the known numerical MCT results for the collective density
correlators �qðtÞ within the Percus-Yevick Sq approxima-

tion [12]. This model yields a glass transition at packing
fraction ’c � 0:516, where ’ ¼ ð4�=3Þ%a3 with number
density % is the only parameter. Figure 1 shows our results
for the delocalization threshold force Fex

c for a probe equal
to the host particles (Sq ¼ 1þ Ssq). This threshold
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FIG. 1 (color). Circles: Threshold force Fex
c ð’Þ needed to

delocalize a hard-sphere probe particle in a glass of equally
large hard spheres with packing fraction ’ above the glass
transition (dotted line), calculated from MCT within the
Percus-Yevick approximation. Crosses mark Fex values used in
Fig. 2. Inset: corresponding schematic-model result for vs ¼ 4
(see text).
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Fex
c ð’cÞ> 0 is finite at ’c, and increases further with

increasing density. Note that Fex
c ¼ Oð50kBT=aÞ, much

larger than one might intuitively expect. This reflects the
strong caging force exerted by the set of nearest neighbors
that must be overcome before the probe can be delocalized.

The inverse Fourier transform of fsq is the t ! 1 proba-

bility distribution for the position of a probe starting at the
origin; Fig. 2 shows our results at packing fraction ’ ¼
0:52, slightly above the glass transition, for several forces
below Fex

c . For zero force, the distribution is spherical-
symmetric and centered around the origin; it decays on a
length scale of 0:2a, the typical localization length for
solids dominated by hard-core repulsion. Small applied
forces mainly shift the center of the distribution to a
position x0 � 0:2a; i.e., they push the probe to the ‘‘cage
wall’’ without essentially distorting the cage. Close to the
delocalization threshold, however, fsðrÞ develops a de-
formed tail extending in the force direction, reducing the
spherical symmetry to a merely rotational one (around the
Fex axis). Interestingly, the tail does not extend along the
symmetry axis; rather, a ‘‘dip’’ is seen in direction of the
applied force. For Fex � Fex

c , fsq and fsðrÞ vanish, indicat-
ing a delocalized state.

To discuss probe friction or similar dynamical quanti-
ties, we need to solve the time-dependent and spatially
inhomogeneous equations (6). A first step towards this is to
solve a simplified, schematic MCT model. Take � ¼ 1þR1
0 �sðtÞ�ðtÞdt, with

@t�
sðtÞ þ!s�sðtÞ

þ
Z t

0
msðt� t0Þ@t0�sðt0Þdt0 ¼ 0; (7a)

msðtÞ ¼ vs�
s�ðtÞ�ðtÞ; (7b)

!s ¼ 1� iFex. The host correlator �ðtÞ is set by the ‘‘F12

model’’ often used to describe glassy dynamics in equilib-
rium [10,12], governed by a separation parameter � such
that � < 0 in the liquid, and � � 0 in the glass; � thus
measures the host interactions. vs describes the strength of
probe-host coupling. Its Fex dependence is ignored, ne-
glecting the interplay arising from couplings involving
more than one wave vector. Still, the model recovers the
qualitative behavior of the force threshold (see inset of
Fig. 1) [12]. We expect the schematic-model to describe
reasonably well the small-Fex regime and universal aspects
of the transition at Fex

c .

To test the simplified model, we performed simulations
of a slightly polydisperse quasi-hard-sphere system under-
going strongly damped Newtonian dynamics, which shows
a glass transition at ’c � 0:595 [13]. Particles (mass m ¼
1, kBT ¼ 1, radii distributed uniformly in [0.9, 1.1]) suffer
friction with the solvent (�0 ¼ 50) and random forces
obeying the fluctuation-dissipation theorem. One particle
is randomly selected to undergo an external force Fex until
it reaches a distance half the size of the simulation box
(elongated in the direction of Fex by a factor of 8). The
average probe velocity is measured sampling more than
300 independent trajectories, and the friction is calculated
using Eq. (3). All simulations were initially equilibrated,
except for ’ ¼ 0:62, where the system was aged for tw ¼
25 000. At this density, results show little influence of
aging for forces Fex * 35kBT=a.
A strong decrease in the dynamical friction � around

Fex
c ¼ Oð40kBT=aÞ seen in the simulation [symbols in

Fig. 3(a)] indicates the force threshold. Fitting � and vs

per curve, and two overall shift factors accounting for the
dimensionless units of the model, the schematic model
reproduces this behavior for ’<’c. In the idealized
glass, it predicts a true delocalization transition around
Fex
c ¼ OðvsÞ (vs sets the threshold scale in the schematic
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FIG. 3 (color). (a) Probe friction � as a function of external
force for packing fractions ’ as indicated, from simulations of a
quasi-hard-sphere system (filled symbols), from Brownian dy-
namics for monodisperse HS (Ref. [17], open symbols).
(b) Experimental force-velocity relations for a colloidal suspen-
sion, from Ref. [5] (open symbols). Lines: fits using the sche-
matic model (see text and Ref. [12] for parameters); common
rescaling factors for force and friction increment (� � �s) are
17:9kBT=a and 0:29�s (left panel), 0.06 pN and 0:19�s (right
panel).
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FIG. 2 (color). Contour plot of the
probability distribution fsðrÞ for a local-
ized hard-sphere probe of radius a in a
hard-sphere system with same radius at
’ ¼ 0:52, for external forces acting to
the right with indicated magnitude in
units of kBT=a.
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model; cf. Fig. 1 and [12]): � ! 1 for Fex < Fex
c , exem-

plified by a � ¼ 0 curve in Fig. 3(a). In the simulation, �
remains finite in the accessible window presumably be-
cause of ergodicity restoring processes ignored here [10].
Our model also explains recent experiments on colloidal
systems using larger probes [5], as shown in Fig. 3(b). In
these velocity-force curves obtained in the liquid, the
force-threshold signature is a steep increase of hvsi1
around Fex

c � 0:2 pN � 50kBT=a, again reproduced by
the model. For too large external forces, the model fails:
restricting to only one correlator in Eqs. (7) leads to a
vanishing friction increment, i.e., �=�0!1 for Fex � Fex

c .
The virtue of the schematic model is to allow detailed

qualitative predictions for the slow nonequilibrium dynam-
ics. This is demonstrated by Fig. 4, comparing with the
tagged-particle density correlation function �s

qðtÞ obtained
from the simulation for a wave vector q k Fex with mag-
nitude corresponding to the nearest-neighbor peak in Sq.

The simulation confirms that the correlation functions (for
this q direction) take complex values as a signature of
nonequilibrium, naturally arising in our microscopic
framework. For q perpendicular to the external force,
�s

qðtÞ ¼ ð�s�qðtÞÞ� remains real valued, owing to the rota-

tional symmetry �s
qðtÞ ¼ �s�qðtÞ, and exhibits two-step

decay typical for glass formers with an intermediate pla-
teau and a final relaxation sped up by the external force
(not shown). No clear plateau is seen in Fig. 4 for q parallel
to Fex. For large forces, the �s

qðtÞ show pronounced oscil-

lations, quite unexpected for a Brownian system, and even
stronger in the simulation data.

To summarize, we have developed a microscopically
founded theory for the nonlinear active microrheology
close to a glass transition. Starting from the
Smoluchowski equation without hydrodynamic interac-
tions, and applying approximations in the spirit of the
mode-coupling theory of the glass transition, we predict

the probe friction as a function of the external force and of
the equilibrium host structure.
The theory predicts a finite microrheological

force threshold needed to delocalize a probe from a glassy
host, locally melting it. In the dense liquid, this is reflected
by a strong nonlinear decrease in friction coefficients
differentiating the regimes where cages are either broken
by slow structural relaxation (for small external force), or
by large enough applied force. A schematic model captures
these aspects and allows us to fit experimental and simu-
lation data for not too large external forces.
The force threshold could be related to the existence of a

yield stress well established for glassy colloidal systems,
and predicted by MCT for constant-velocity bulk driving.
It will be promising to study more closely this relation and
the dynamical behavior of the system close to micro- and
macroyielding.
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FIG. 4 (color). Probe-particle density correlation function
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qðtÞ from computer simulation at ’ ¼ 0:55 (left) and from
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peak in the static structure factor SðqÞ. For the simulation,
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