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The nonequilibrium effective potential is computed for the Frank model of spontaneous mirror

symmetry breaking (SMSB) in chemistry in which external noise is introduced to account for random

environmental effects. When these fluctuations exceed a critical magnitude, mirror symmetry is restored.

The competition between ambient noise and the chiral bias due to physical fields and polarized radiation

can be explored with this potential.

DOI: 10.1103/PhysRevLett.102.248101 PACS numbers: 87.15.B�, 05.40.Ca, 11.30.Qc

Enantiomers are molecules that are nonsuperimposible
complete mirror images of each other. A remarkable fea-
ture of nature is that this mirror or chiral symmetry is
broken in all biological systems, where processes crucial
for life such as replication, imply chiral supramolecular
structures, sharing the same chiral sign (homochirality) for
all present living systems. These chiral structures are pro-
teins, composed by amino acids almost exclusively found
as the left-handed enantiomers (L), and DNA, RNA poly-
mers and sugars with chiral building blocks composed by
right-handed (D) monocarbohydrates, and chiral amphi-
philes forming membranes. This fact has led to the wide-
spread perception that the presence of handed or chiral
molecules is a unique signature of living systems. The
emergence of this biological homochirality in the chemical
evolution from prebiotic to living systems is a tantalizing
enigma in the origin of life, as is the robustness of homo-
chirality in actual living systems, and is a fascinating
subject that has intrigued scientists from diverse back-
grounds. Current reviews of the origin of homochirality
can be found in [1–6]. Previous hypotheses suggesting that
homochirality emerged after the development of the pri-
meval biological system [7], are being replaced by the
widespread conviction that enantiomerically pure com-
pounds are a prerequisite for the evolution of living species
and that mirror symmetry breaking must have taken place
before the emergence of life [8–10]. We adopt the latter
viewpoint here.

Frank introduced a paradigmatic model for spontaneous
mirror symmetry breaking (SMSB) and autocatalytic am-
plification in 1953 [11]. A variant [12] of this open-flow
reaction scheme involves the two enantiomers L andD and
an achiral reactant A (kept at constant concentration) and
the following reaction steps, where the k�i denote the
forward, þ (or reverse, �) rate constants. Production of
chiral compound (k1, k�1): A $ L, A $ D, autocatalytic
amplification (k2, k�2): Lþ A $ Lþ L, Dþ A $ Dþ
D, and mutual inhibition (k3): LþD ! LD. The hetero-
dimer LD is removed from the system. Frank’s model
contains the fundamental ingredients believed to be essen-
tial for mirror symmetry breaking and subsequent chiral
amplification [13]. It can be elaborated by adding in poly-

merization side reactions [14–18] that can yield homochir-
ality in populations of oligomers. The corresponding rate
equations expressed in terms of the enantiomeric excess
� ¼ ð½L� � ½D�Þ=ð½L� þ ½D�Þ, the order parameter for mir-
ror symmetry breaking, and the net chiral matter � ¼
½L� þ ½D� are
d�=dt ¼ �2k1A�=�þ ðk3 � k�2Þ��ð1� �2Þ=2; (1)

d�=dt ¼ 2k1A� �2½k�2 þ ðk3 � k�2Þð1� �2Þ=2�
þ ðk2A� k�1Þ�: (2)

These rate equations are deterministic, but more realistic
treatments should take noise phenomena into account. The
nature of such fluctuations can be internal as well as
external to the chemical system. Intrinsic statistical fluctu-
ations in � about the ideal racemic composition ½L� ¼ ½D�
[19], as well as diffusion-limited noise present in spatially
extended systems [20], are sufficient to tip the system over
into one of its equally likely stable chiral states when k3 >
k�2. For prebiotic scenarios, the coupling of reaction
schemes such as this one to environmental effects (e.g.,
meteor impacts) is crucial for determining the role of early
planetary environments and external disruptions on the
emergence, if any, of homochirality [18].
This Letter has a twofold purpose. On the one hand, we

aim to establish analytically the impact of both environ-
mental disturbances and chiral bias on chemical systems
that lead to SMSB. These external effects can be modeled
stochastically and lead one to consider stochastic differen-
tial equations [18]. Recently, we developed an analytic
perturbation method for calculating potentials associated
with a wide class of stochastic partial differential equations
[21]. The potential is ideally suited for treating symmetry
breaking phenomena in nonequilibrium systems. Hence,
the second goal of this Letter is to demonstrate the com-
putational utility of that method for a fundamental model
of mirror symmetry breaking. The basic result is that
ambient noise tends to restore mirror symmetry and ho-
mochirality is diminished, confirming independent nu-
merical results [18].
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Tree potential.—For constant A, introduce dimension-
less time � ¼ ðk2A� k�1Þt, and we verify that when the
rate of autocatalytic amplification exceeds the rate of
monomer decay, � changes more rapidly than the enantio-
meric excess �. The system rapidly reaches a quasisteady
state for � (d�=dt � 0) and then the slow variable �
evolves and the full system reaches its true steady state
[22]. For this adiabatic regime, we then put � ! �� in
Eq. (1), where �� denotes the quasisteady value for �. We

define the potential Vð�Þ [15] via d�
dt ¼ Fð�Þ ¼ �V0ð�Þ,

and so obtain

Vð�Þ
b

¼ �4

4
þ

�
r� 1

2

�
�2 þ v0; (3)

where v0 is an integration constant, and where b ¼ 1
2 �ðk3 � k�2Þ�� > 0, r ¼ a=b, and a ¼ k1A=�

� � 0. For the
scaled potential, r is the only free variable. This is plotted
in Fig. 1 as a function of �1 � � � 1 and for 0 � r � 1

2 .

The absolute minima correspond to the asymptotic stable

states of the chemical system and are located at � ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2r
p

. By varying r, we see how direct monomer
production (k1 > 0) tends to racemize the system, as the
two chiral minima move continuously towards zero and
coalesce at the origin when k1A increases. Strict homo-
chirality j�j ¼ 1 holds only for k1A ¼ 0, otherwise, k1A >
0 implies j�j< 1. For r � 1

2 , the chiral symmetric state

� ¼ 0 is the only stable solution. Gleiser and Walker [18]
obtained a potential qualitatively similar to Fig. 1, for a
reduced polymerization model with direct production of
monomers, which also clearly exhibits the racemizing
tendency of such autogenic terms [see their Fig. 1(a)].

The effective potential.—Following Gleiser and co-
workers [18], we couple the system to an external noise
source � to model random environmental effects. Applying
the methods developed in [21], the corresponding stochas-
tic differential equation for �

d�

dt
¼ Fð�Þ þ �ðtÞ; h�ðtÞ�ðt0Þi ¼ A�ðt� t0Þ; (4)

can be written as an ordinary differential equation with an
effective, noise-corrected force FA, as follows:

d�

dt
¼ FAð�Þ; (5)

where to one-loop order in the noise amplitude A, FA is
given by [21]

FAð�Þ ¼ Fð�Þ þ 1

2

A
Fð�Þ ðRe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½F0ð�Þ�2 þ Fð�ÞF00ð�Þ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½F0ð�Þ�2

q
Þ þOðA2Þ; (6)

and Re is the real part. Thus, for example, if a large meteor

impacts near a well-mixed prebiotic puddle or small pond,
the bulk pond is ‘‘shaken’’ as a whole and a time dependent
noise �ðtÞ could provide a satisfactory description of the
disturbance.
Equation (3) for r ¼ 0 implies Fð�Þ ¼ b�ð1� �2Þ. The

expression under the first square root in Eq. (6) is
½F0ð�Þ�2 þ Fð�ÞF00ð�Þ ¼ b2ð1� 12�2 þ 15�4Þ. This is
negative on the open intervals (� 0:84, �0:31) and
(0.31, 0.84), zero on their end points, and is strictly positive
elsewhere [23].
The one-loop effective potential is therefore given by

VAð�Þ ¼ �
Z

FAð�Þd�þ v1; (7)

where v1 is an integration constant. We define

I 1 ¼
Z d�

Fð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½F0ð�Þ�2 þ Fð�ÞF00ð�Þ

q
: (8)

This integral can be worked out in closed form and yields

2I1 ¼ � ln

��������
2

ffiffiffiffi
R

p � 12�2 þ 2

�2

��������
þ 2 ln

��������
4

ffiffiffiffi
R

p þ 18ð�2 � 1Þ þ 8

�2 � 1

��������
� ffiffiffiffiffiffi

15
p

lnj2 ffiffiffiffiffiffiffiffiffi
15R

p þ 30�2 � 12j; (9)

valid whenever R ¼ 1� 12�2 þ 15�4 � 0. Otherwise,
from Re in Eq. (6) we have I1 ¼ 0. Next, define I2 as
follows:

I 2 ¼
Z d�

Fð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½F0ð�Þ�2

q
: (10)

Since the function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½F0ð�Þ�2p ¼ bjð1� 3�2Þj then

I 2 ¼
8<
:

1
2 lnj�2j þ lnj1� �2j þ c1;

�
� 1ffiffi

3
p <�< 1ffiffi

3
p
�
;

� 1
2 lnj�2j � lnj1� �2j þ c2;

�
� � � 1ffiffi

3
p and 1ffiffi

3
p � �

�
:

(11)

FIG. 1. The Frank model potential Vð�Þ=b, Eq. (3), displaying
the racemizing tendency of the direct chiral monomer production
A ! L, A ! D. Sequence of curves from bottom to top: r ¼ 0,
0.2, 0.4, and r ¼ 0:5.

PRL 102, 248101 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
19 JUNE 2009

248101-2



Matching up at �2 ¼ 1
3 ensures continuity in I2. Without

loss of generality, we take c2 ¼ 0. Then c1 ¼ � ln13 �
2 ln23 ’ 1:91.

The effective potential Eq. (7) can be written in terms of
these two integrals as follows:

VAð�Þ ¼ Vð�Þ �A
2

fI1 � I2g þOðA2Þ; (12)

up to constants of integration used to match up the one-
loop corrections to insure continuity. For domains over
which R � 0, namely �<�0:84, and �0:31<�<
0:31 and �> 0:84, then I1 is given by Eq. (9), otherwise
when R< 0, then I1 ¼ 0. Thus, for those regions over
which R< 0, the one-loop correction in Eq. (12) is equal to

þA
2 I2. On the two outer intervals (�1, �0:84) and (0.84,

1), the one-loop correction is given by �A
2 fI1 � I2g.

From Eqs. (9) and (11) we can calculate this quantity valid
on these intervals, and find that

fI1 � I2g ¼ � 1

2
ln

��������
2

ffiffiffiffi
R

p � 12�2 þ 2

�2

��������
þ 1

2
lnj�2j þ lnj 4 ffiffiffiffi

R
p þ 18ð�2 � 1Þ þ 8j

�
ffiffiffiffiffiffi
15

p
2

lnj2 ffiffiffiffiffiffiffiffiffi
15R

p þ 30�2 � 12j: (13)

Whereas for the central interval (�0:31, 0.31), we calculate

fI1 � I2g ¼ � 1

2
lnj2 ffiffiffiffi

R
p � 12�2 þ 2j � lnj1� �2j � c1

þ ln

��������
4

ffiffiffiffi
R

p þ 18ð�2 � 1Þ þ 8

�2 � 1

��������
�

ffiffiffiffiffiffi
15

p
2

lnj2 ffiffiffiffiffiffiffiffiffi
15R

p þ 30�2 � 12j: (14)

Next write VA ¼ V þ ðA=2Þ�V, then the form of the
pure one-loop correction �Vð�Þ is completely specified as
follows:

�Vð�Þ ¼

8>>>>><
>>>>>:

�Voutð�Þ þ v1 : ð�1;�0:84Þ
I2ð�Þ þ v2 : ð�0:84;�0:31Þ
�Vinð�Þ þ v3 : ð�0:31; 0:31Þ
I2ð�Þ þ v2 : ð0:31; 0:84Þ
�Voutð�Þ þ v1 : ð0:84; 1Þ:

Here,��Vout is given by Eq. (13),��Vin by Eq. (14), and
I2 by Eq. (11). Matching up at the end points of the above
intervals fixes the constants v2 ¼ v1 þ 3:182, v3 ¼ v1 �
0:001, where v1 is an overall integration constant we are
free to choose; see Eq. (7). We take v1 ¼ �Vinð0Þ.

Racemization.—We investigate the role that weak exter-
nal noise has on mirror symmetry breaking using the
effective potential. We first scale out by the factor b, and
evaluate VA=b while varying the dimensionless noise

amplitude 0 � A
2b 	 1. The absolute minima of the effec-

tive potential correspond to the possible stable final chemi-
cal states. From the sequence of curves in Fig. 2,

corresponding to A
2b ¼ 0:0, 0.05, 0.1, 0.2, and 0.3, we see

that increasing the noise amplitude tends to racemize the
system. The homochiral states j�j ¼ 1 exist only in the
absence of noise (bottom curve). For low levels of noise,
the system has stable chiral states corresponding to j�j<
1. For noise above a critical value, the only stable final state
is the racemic solution � ¼ 0 (top curve). Applying a
linear stability analysis to Eq. (5) we calculate the critical
noise level Ac above which the racemic state is the

globally stable solution: Ac

2b ¼ 1
3 ffi 0:33, which is borne

out by inspection of the curves in Fig. 2. New relative
maxima begin to form and persist for A=2b * Ac=2b
thus leading to a pair of metastable chiral states (Fig. 2).
Numerical simulations, in two and three dimensions [18],
indicate, however, that the ee goes to zero continuously as
the noise increases from zero and becomes strong, so these
extra maxima are most likely artifacts of the lowest order
calculation. Using the nominal values k3 � 102 Ms�1,
k�2 � 10�5 Ms�1, and �� ¼ 1 M, then 2b ¼ 100 s�1,
and external noises with A & 33 s�1 would be perturba-
tively valid.
Chiral bias.—External magnetic, electric, gravitational

fields, and vortex motion, as well as polarized radiation,
can induce mirror symmetry breaking [24]. Chiral bias can
be studied via the potential by assigning chiral specific
reaction rates to the monomer production and autocatalysis
steps thus replacing ki by kLi ¼ kið1þ 1

2 �Þ and kDi ¼
kið1� 1

2 �Þ for i ¼ �1, �2 where ki ¼ ðkLi þ kDi Þ=2
[18,25]. For example, � ¼ �E

kT � 10�17 for parity violation

in the electroweak interactions at room temperature, where
�E is the energy difference between the two enantiomers
[25]. In the presence of chiral bias, the tree-level potential

is given by (for r ¼ 0) Vð�Þ
b ¼ �4

4 � �2

2 � �0½�� �3

3 � þ v0,

where �0 ¼ �
ðk2A�1

2k�2�
�Þ

ðk3�k�2Þ�� . This is plotted in Fig. 3 for 1>

�0 � 0: Because of the tilt, there are no longer racemic
solutions for any bias � > 0, only chiral states are possible,
and only one of these two chiral states will be an absolute
minimum; see also Fig. 1(b) of Gleiser and Walker [18].

FIG. 2. The one-loop effective potential VA=b for the Frank
model. The final enantiomeric excess � corresponds to the abso-
lute minima of the potential , and decreases in absolute value
below unity as the noise strength increases. The curves from
bottom to top correspond toA=2b ¼ 0:0, 0.05, 0.1, 0.2, and 0.3.
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When we include noise, the one-loop biased effective
potential is obtained by subtracting �0ð�� �3=3Þ from the
right-hand side of Eq. (12), and is valid up to terms of order
Oð�0AÞ and OðA2Þ. At this lowest order, the effect of the
bias is to tilt the noise-corrected potential in the same sense
as shown in Fig. 3, so that the sequence of noise induced
minima located at 0<� � 1 in Fig. 2 now becomes the
absolute minima. Because of this tilting the origin of the
potential is no longer locally flat (V 0

Að0Þ � 0) for any

value of the noise. The noise has a racemizing effect
upon the biased system such that above a critical noise
level, the effective potential possesses a global minimum
corresponding to a weakly chiral state. Thus, for example,

we calculate that for �0 ¼ 0:001, 0.01, and 0.1 then Ac

2b ¼
0:311, 0.318, and 0.388, and the corresponding enantio-
meric excesses are � � 0:10, 0.15, and 0.20, respectively.
For increasing chiral bias, ever stronger noise levels are
‘‘tolerated’’ before homochirality j�j ¼ 1 is erased. A de-
tailed account of noise and chiral bias on mirror symmetry
breaking will be provided elsewhere.

In this Letter we applied the stochastic field theory
formalism of [21] to study the emergence of chirality in
a key model of SMSB in chemistry in which environmental
effects are modeled by external noise. We focused on the
Frank model due to the central role it plays in theoretical
approaches to mirror symmetry breaking [9,11,13–
18,20,22,24,25]. By strictly analytic means we verified
that weak noise racemizes the system, erasing homochi-
rality. This is a perturbatively valid key result, confirming
the previous numerical results obtained by Gleiser and co-
workers [18]. We also studied the competition between
chiral bias and external noise and verified that stronger
noise levels are required to racemize the system in the
presence of bias. We assumed well-mixed conditions
(zero dimensional systems), but the analytic method [21]
enjoys the flexibility to include diffusion in d dimensions
and spatially dependent noise terms. A preliminary study
of the d ¼ 2 potential indicates that the results presented
here carry over when spatial dependence is included. The
important role that fluctuation phenomena, noise, and chi-

ral bias play in the origin of homochirality can therefore be
analyzed in an elegant and systematic way.
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