
Pseudospin Valve in Bilayer Graphene: Towards Graphene-Based Pseudospintronics

P. San-Jose, E. Prada, E. McCann, and H. Schomerus

Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
(Received 9 March 2009; published 18 June 2009)

We propose a nonmagnetic, pseudospin-based version of a spin valve, in which the pseudospin

polarization in neighboring regions of a graphene bilayer is controlled by external gates. Numerical

calculations demonstrate a large on-off ratio of such a device. This finding holds promise for the

realization of pseudospintronics: a form of electronics based upon the manipulation of pseudospin

analogous to the control of physical spin in spintronics applications.
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Soon after its discovery [1], it was realized that graphene
supports an additional quantum number called pseudospin
[2–4] that arises because the honeycomb lattice is com-
posed of two triangular sublattices. Wave-function ampli-
tudes can be written like the two components of a spin-1=2
elementary particle, and electrons in graphene display
characteristics analogous to relativistic fermions [2,3]. In
particular, this includes the celebrated effect of chirality,
whose profound consequences include an unusual se-
quencing of plateaus in measurements of the quantum
Hall effect [2,3,5], suppression of backscattering [6,7],
and Klein tunneling at interfaces [8,9].

So far, it has not been possible to exploit the pseudospin
degree of freedom in graphene in a similar way as physical
spin in spintronics [10] and quantum computing [11] ap-
plications. In a monolayer of graphene, chirality means
that the orientation of an electron’s pseudospin is inextri-
cably linked to the direction of its momentum, thus con-
straining the pseudospin to lie in the plane of the graphene
sheet and preventing its use as an independently tunable
degree of freedom. In bilayers of graphene [5,12,13], the
pseudospin degree of freedom is associated with the elec-
tronic density on the two layers. The constraint of chirality
entails that electronic density is equally divided between
the two layers so that the pseudospin again lies in the plane
of the layers but now turning twice as quickly as the
direction of momentum [5,12]. Min et al. [14] were the
first to realize that bilayers still offer a promising platform
for pseudospintronics. They predicted that a pseudomag-
netic state can form spontaneously due to strong Coulomb
interactions at vanishing charge-carrier density because the
density of states remains finite for a parabolic dispersion
relation, in contrast to the situation in a monolayer.

In this Letter, we propose a variant of graphene-based
pseudospintronics which exploits another direct advantage
of a bilayer over a monolayer, namely, the facility to induce
a difference between the on-site energies on the two layers
via a perpendicularly applied electric field, which can be
realized by pairs of gate electrodes (see Fig. 1). The
resulting asymmetry of the layers induces an energy gap
between the conduction and valence bands [12,15–17], as
observed in photoemission [13] and transport [18,19] mea-

surements. For states above or below the gap, interlayer
asymmetry has the effect of creating an ‘‘up’’ or ‘‘down’’
component of pseudospin perpendicular to the electronic
momentum and the plane of the sheet [12,14]. The electric
field hence acts on the pseudospin in the same way as a
magnetic field acts on the physical spin of electrons in
spintronic applications. In particular, the preferred pseu-
dospin direction can be switched by inverting the sign of
the applied potential difference. In analogy to the giant
magnetoresistance (GMR) induced by a domain wall
boundary in magnetic materials [20,21], one would there-
fore expect that interfaces between regions of different gate
polarity inhibit the flow of electrons. We will demonstrate
that this effect can indeed be utilized to realize an all-
electronic, pseudospin-based analogue of a spin valve with
a large on-off ratio.
Concepts.—The proposed pseudospin valve can be real-

ized in a two-dimensional sheet of bilayer graphene with
sets of gates which produce a spatial variation of interlayer
asymmetry in the direction of current flow (see Fig. 1). Top
and bottom gates are used to independently control the
Fermi level and the interlayer asymmetry, the latter creat-
ing an out-of-plane component of pseudospin. When the
polarity of the two pairs of gates is identical, the device is

FIG. 1 (color). Pseudospin-valve effect in bilayer graphene.
Schematic diagram of a pseudospin valve in bilayer graphene
in its antiparallel (AP) configuration.
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in its ‘‘parallel’’ configuration and offers only a small
resistance to the flow of electrons with energies above
the gap. Figure 1 shows the device in its ‘‘antiparallel’’
configuration, which is realized when the polarity of the
gates changes sign across the device. This produces a
corresponding rotation of the pseudospin polarization
with a switching of the out-of-plane component.
Similarly to spin scattering at domain walls [21], the
pseudospin of an incoming electron will precess about
the changing local polarization as it attempts to follow it.
If the change in the polarization rotation is sharp enough,
the realignment of the electron’s pseudospin should only
be partially successful, leading to reflection and a drop in
the flow of current through the device.

We characterize the fidelity of the pseudospin valve in
terms of the pseudo-magnetoresistance (PMR) ratio

PMR ¼ RAP � RP

RAP

; (1)

which is defined by the resistances RP (parallel configura-
tion) and RAP (antiparallel configuration) determining the
current I ¼ V=R flowing through the device in response to
an applied bias voltage difference V. The PMR resistance
ratio is the analogue of the conservative definition of
magnetoresistance in spintronic applications [10,21], and
takes the value 100% for a perfect spin valve.

As in conventional spintronic applications, we also con-
sider how the pseudospin-valve effect can be extended to a
broader range of energies via serial connection of regions
of different polarity. This leads to the design of a
pseudospin-valve transistor operated by switching the po-
larity of a central gate of length l (shown in Fig. 2).

Numerical results.—We start with numerical results,
which are based on the microscopic tight-binding model
of bilayer graphene. This model offers an accurate descrip-
tion of electronic transport in terms of a small number of
characteristic energies and length scales. Transport be-
tween carbon atoms in a single layer (arranged on a honey-

comb lattice with bond length a ¼ 1:42 �A) is described by
kinetic hopping energy �0 � 2:9 eV, which also deter-
mines the Fermi velocity v0 ¼ ð3=2Þa�0=@ of an isolated
monolayer. In a bilayer, the two sheets of carbon are
arranged according to Bernal stacking, whereby half of
the atoms are strongly coupled to an atom in the other

layer, with a strength determined by the interlayer coupling
parameter �1 � 0:39 eV. Additional next-nearest-
neighbor couplings are nonessential for the problem at
hand, and are therefore neglected for simplicity.
In the parallel configuration, the spatially constant on-

site potential takes the valueUtop ¼ U0 in the top layer and

Ubottom ¼ �U0 in the bottom layer. In the antiparallel
configuration of the device, we model the on-site potential
by

UtopðxÞ ¼ �UbottomðxÞ ¼ UðxÞ � �U0erfðx=dÞ; (2)

where erf is the error function and x is the coordinate in the
direction of transport. The main design parameters of the
pseudospin valve are the typical length scale d of variation
of the gate potential and the magnitude U0 of the potential
value at large distance, as well as the Fermi energy EF

which determines the energy at which the electrons are
injected from the electrodes (EF ¼ 0 for a charge-neutral
gapless bilayer). In the parallel configuration, the presence
of a homogeneous symmetry-breaking on-site potential

opens an energy gap 2jU0j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2U0=�1Þ2

p
around the

Fermi energy of the charge-neutral bilayer (see again
Fig. 1). For the antiparallel configuration with the inhomo-
geneous potential UðxÞ of Eq. (2), the solution of the tight-
binding model requires, in general, a numerical approach.
Since U is y independent, the problem of an infinitely

wide ribbon is separable, and electronic modes with fixed
transverse wave number ky decouple. For each transverse

mode, the problem can be reduced to a one-dimensional
chain of coupled bilayer unit cells, where each unit cell is
composed of four carbon atoms. The Green function of
each chain can be computed efficiently using the recursive
Green function technique [22], which delivers the trans-
mission amplitude tðkyÞ via the Fisher-Lee formula [23]. In

the linear response regime, the total phase-coherent con-
ductance of the nanoribbon is then obtained from the
Landauer formula. For a ribbon of finite width W, the
following considerations remain valid as long as W � d
and kFW � 1, so that the contribution of edges can be
neglected (see the discussion at the end of the paper).
The calculated conductance versus Fermi energy is

shown in the inset of Fig. 3 for the parallel configuration,
as well as the antiparallel configuration with one or two
interfaces. In these calculations, the interface parameters
are d ¼ 50a and d ¼ l ¼ 50a, respectively, and the
asymptotic gap is U0 ¼ 0:07 eV, corresponding to pa-
rameters which can be realized in present bilayer experi-
ments [13,19]. We find that close to the band edge, the
conductance in the antiparallel configuration is strongly
reduced below its value in the parallel configuration. The
resulting PMR ratio is plotted in the main panel of Fig. 3.
For energies just above the gap, the PMR peaks at 100%.
For increasing Fermi energy, the resistance ratio drops,
which can be attributed to the decreasing out-of-plane
component of the pseudospin of incoming electrons as
they become less sensitive to the asymmetry of the layers

FIG. 2 (color). Schematical illustration of a pseudospin-valve
transistor. This device is operated by switching the polarity of a
central gate of length l (shown is the antiparallel configuration).

PRL 102, 247204 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
19 JUNE 2009

247204-2



when their kinetic energy increases. As expected from the
GMR analogy, the presence of a second interface in the
pseudospin-valve transistor (dashed line) significantly ex-
tends the energy range over which the PMR is � 100%.

Analytical considerations.—A qualitative analysis of the
pseudospin-valve effect can be achieved by considering the
low-energy physics of gapped graphene bilayers. The
tight-binding Hamiltonian delivers a band structure with
four bands. For realistic values of the charge-carrier den-
sity, the Fermi surface of bilayer graphene lies in the
vicinity of two valleys, indexed by � ¼ �1, situated at
theK andK0 point at the corners of the hexagonal Brillouin
zone. Owing to the interlayer coupling, two of the bands
are split away by an energy � ��1. For the interlayer
asymmetries and Fermi energies jU0j, jEFj � �1 assumed
in this work, these split bands do not contribute to the
electronic transport. In the absence of layer asymmetry,
the two remaining bands touch at zero energy and have an
approximately parabolic dispersion relation E � �p2=2m,
with effective mass m ¼ �1=2v

2
0 and corresponding Fermi

velocity vF � 2v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijEj=j�1j
p

.
To explain the influence of interlayer asymmetry, we

employ a two-component Hamiltonian [12] that approxi-
mately describes the electronic behavior in these two low-
energy bands,

H2 � � 1

2m

0 ð�px � ipyÞ2
ð�px þ ipyÞ2 0

 !

þ U 0
0 �U

� �
:

The effective Hamiltonian H2 operates in a space of two-

component wave functions � describing electronic ampli-
tudes on the top and bottom layers. The first term in the
Hamiltonian corresponds to a pseudospin-orbit coupling
and ensures chirality of the electronic states in the absence
of a symmetry-breaking on-site potential. The second term
inH2 takes into account the influence of external gates that
produce different on-site energies �U on the two layers.
This term is analogous to the Zeeman energy of a physical
spin in a magnetic field parallel to the z direction and leads

to a gap 2jUj in the electronic spectrum E� � �½U2 þ
ðp2=2mÞ2�1=2. The pseudospin part of the corresponding
wave functions takes the form

�� ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þU=E

p
e�i��

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�U=E

p
ei��

 !
;

where � is the angle of the momentum in the plane p ¼
ðp cos�;p sin�Þ. The pseudospin of such a state is h�i ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðUEÞ2

q
ðî cos2�þ ĵ� sin2�Þ þ k̂ U

E . For energy near

the vicinity of the gap jEj � jUj, the out-of-plane compo-
nent takes its maximum value h�zi � 1, whereas it is
reduced away from the gapped region.
The pseudospin-valve effect proposed in the present

Letter originates in the large resistance at interfaces be-
tween regions of opposite preferred pseudospin direction.
This resistance arises because the pseudospin degree of
freedom can adjust itself to such a spatial variation only

over a distance ls ¼ hv0=
ffiffiffiffiffiffiffiffiffiffiffiffijE�1j

p
, as follows from the

scaling of the different terms in the two-component model.
This pseudospin precession length scale is comparable to
the Fermi wavelength, which is the scale on which chirality
is established in the symmetric bilayer.
In both devices studied, the amount of reflection of

incoming electrons in the antiparallel configuration will
therefore depend on the sharpness of the interface d as
compared to the pseudospin precession length ls. Figure 4
shows the computed dependence of the resistance ratio on
d for fixed values of EF ¼ U0 ¼ 0:07 eV. For these pa-
rameters, the pseudospin precession length ls � 165a. In
the regime d=ls < 1 of an abrupt interface, the electron’s
pseudospin is not able to rotate quickly enough to accom-
modate the change, which causes reflection and a large
spin-valve effect. The series connection of two interfaces
in the transistor further increases the resistance ratio to
almost 100%, except for very small values of d where the
resistance in the antiparallel arrangement drops due to
tunneling through the central region. In the opposite limit
d=ls � 1, the pseudospin of incoming electrons is able to
adiabatically adapt itself to the change of local polariza-
tion. In this limit, the pseudospin-valve effect becomes
negligible both for the single interface as well as for the
series connection of two interfaces. The numerical results
confirm that the transition between both regimes occurs at
d � ls. The pseudospin-valve effect can therefore be real-
ized in devices with gate separation d of the order of a few
tens of nanometers.
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FIG. 3 (color online). Pseudo-magnetoresistance ratio PMR ¼
ðRAP � RPÞ=RAP of the pseudospin valve (where P refers to the
parallel configuration) versus the Fermi level of incoming elec-
trons for d ¼ 50a (solid curve). Here, U0 ¼ 0:07 eV is the
magnitude of the gate potential at large distances. The dashed
curve refers to the pseudospin-valve transistor shown in Fig. 2,
with l ¼ 50a. Inset: Conductance versus Fermi energy in the
antiparallel (solid and dashed curves) and parallel (dotted curve)
configurations from which the PMR is derived. The normaliza-
tion factor is GPðEF ¼ U0Þ ¼ 4U0W=ð3�a�0Þ.
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Discussion and Conclusions.—The large mobility of
charge carriers in graphene has stimulated intense research
efforts that aim at the realization of graphene-based elec-
tronic devices. In particular, manipulation of the differen-
tial population of valley states in momentum space has
been proposed [24], leading to a ‘‘valleytronic’’ analogy of
spintronics. Our proposal of bilayer-based pseudospin-
tronics relies on differential population of atomic orbitals
in real space. This offers a robust mechanism to exploit
spintronic analogies without the necessity of carefully
fabricated nanoribbon edges, which limit the scalability
of valleytronics [25] and induce harmful intervalley scat-
tering [26].

In particular, pseudospintronics relies on bulk effects
which do not depend on the crystallographic orientation
of the interface. For the wide samples considered here
(W � �F ’ ls * d), effects from the sample edges can
be neglected since (i) edge states are localized at realistic
rough edges, (ii) hypothetical clean edges at most contrib-
ute an additional transport channel per spin, and (iii) inter-
valley scattering off the edges can contribute to pseudospin
relaxation across the interface, but this effect is negligible
for d � W. Pseudospintronics is also remarkably robust
against bulk disorder. Chirality guarantees that the bulk
pseudospin-flip rate for majority carriers in a clean ballistic
bilayer is zero (the out-of plane polarization of the pseu-
dospin in the leads is valley-independent). The predomi-
nant scattering mechanism in graphene, Coulomb scat-
tering off charged impurities, does not break chirality
[27,28]. Intervalley scattering contributes to pseudospin-
flip scattering in the interface region, but the scattering
lengths lKK0 ’ 500 nm reported in recent experiments [29]
indicates that this does not add an additional constraint
on d.

Additional advantages of the proposed bilayer pseudo-
spintronics concept arise from the fact that the charge-

carrier densities are finite. In devices that involve position-
ing the Fermi level within the band gap, including field-
effect transistors [18] or valley filters based on topologi-
cally confined channels between insulating regions [30],
the effective gap size is reduced by screening [16,17].
Under these conditions, the largest gaps observed so far
in experiment are of the order of 2U0 � 10 meV � 100 K
[18]. A finite charge density admits far larger gaps with
experimental values reaching 2U0 � 200 meV � 2000 K
[13,19] at high density.
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FIG. 4 (color online). Pseudo-magnetoresistance ratio of the
pseudospin valve (solid curve) and the pseudospin-valve tran-
sistor (dashed curve) as a function of the sharpness d of the
interface between regions of different polarity. The Fermi energy
is set to EF ¼ U0 ¼ 0:07 eV.
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