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The new �-Fe(Te,Se) superconductors share the common iron building block and ferminology with the

LaFeAsO and BaFe2As2 families of superconductors. In contrast with the predicted commensurate spin-

density-wave order at the nesting wave vector (�, 0), a completely different magnetic order with a

composition tunable propagation vector (��, ��) was determined for the parent compound Fe1þyTe in

this powder and single-crystal neutron diffraction study. The new antiferromagnetic order survives as a

short-range one even in the highest TC sample. An alternative to the prevailing nesting Fermi surface

mechanism is required to understand the latest family of ferrous superconductors.

DOI: 10.1103/PhysRevLett.102.247001 PACS numbers: 74.25.Ha, 61.05.fm, 74.70.�b, 75.30.Fv

The recently discovered ferrous superconductors differ
from phonon-mediated conventional superconductors in an
important way: when the nonmagnetic La in LaFeAs(O,F)
is replaced by magnetic lanthanides, TC increases from
26 K to as high as 55 K [1–4], in contrast to the breaking
of the Cooper pairs by magnetic ions [5]. The La(O,F)
‘‘charge reservoir’’ layer turns out not to be a requirement
for superconductivity and can be replaced by simple metal
layers in ðBa=Sr=Ca;K=NaÞFe2As2 [6–9], or completely
absent as shown more recently in the � phase of Fe(Se,Te)
[10–12]. The common iron layer contributes dominantly to
the electronic states at the Fermi level in these families of
materials [13–17], which thus share similar quasi-two-
dimensional Fermi surfaces with a nesting wave vector
(�, 0) in the reciprocal Fe square lattice. The antiferro-
magnetic order observed in the parent compounds of both
the LaFeAsO [18] and BaFe2As2 [19] families of materi-
als, Fig. 1(c), has been predicted by the nesting spin-
density-wave (SDW) mechanism [20]. In view of insuffi-
cient electron-phonon coupling [21–23], spin excitations
from the only known mode at (�, 0) have been proposed as
the bosonic ‘‘glue’’ mediating high TC superconductivity
in these ferrous materials [13–17,20].

However, the weak-coupling SDWmechanism critically
depends on the matching electron and hole Fermi surfaces
in the parent compounds [14]. The nesting condition is lost
when adding electrons or holes to the systems [24]. This
expectation is confirmed in systematic doping [25–27] and
pressure studies [28], which show the destruction of the
SDW order well before the optimal superconducting state
is established. Moreover, despite the same (�, 0) SDW
order being predicted for �-FeTe in first-principles theory

[17], we observed a completely different antiferromagnetic
order with the in-plane propagation vector (��, ��) along
the diagonal direction of the Fe ‘‘square’’ lattice, Fig. 1(b).
The � is tunable from an incommensurate 0.38 to the
commensurate 0.5. Therefore, experimental results re-
ported here call for a better understanding of the mecha-
nism of magnetism and its role in superconductivity for the
ferrous superconductors.
The single-phase FeðTe; SeÞz material in the tetragonal

PbO structure exists in a composition range near z ¼ 1
[29]. In this � phase [10–12] (called � phase in [29]), iron-
chalcogen forms with the same edge-sharing antifluorite
layers as found in the FeAs superconductors. The �-FeSe
with the nominal composition FeSe0:88 was recently re-
ported to superconduct at TC � 8 K [10], which increases
to 27 K at 1.48 GPa [30]. The isovalent series
FeðTe1�xSexÞz in the � phase with nominal z ¼ 0:82 has
been synthesized, and the TC is enhanced to 14 K at x ¼
0:4 at ambient pressure [11]. Similar results have also been
reported for the nominal z ¼ 1 series [12].
The end member �-FeTez is not superconducting, and

bulk measurements indicate a phase transition at TS �
60–75 K [11,12]. As a function of z, there exist two distinct
types of transport behaviors in the low temperature phase:
for z � 0:90 the samples change from a semiconductor to a
metal, while for z < 0:90 the samples remain semiconduct-
ing [11]. Therefore, we selected a typical composition
from each range of z for this study, FeTe0:82 and
FeTe0:90. For superconducting �-FeðTe; SeÞz, we chose
the highest TC � 14 K compound FeðTe0:6Se0:4Þ0:82. The
high-resolution powder diffraction spectra of polycrystal-
line samples, weighing 15–16 g, were measured with
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neutrons of wavelength 2.0785 Å using BT1 at NIST
(Fig. 2). See Ref. [31] for a table listing the refined pa-
rameters. The high-temperature phase of these samples
indeed has the tetragonal P4=nmm structure [10]; however,
the chalcogen and Fe(1) sites of the PbO structure are fully
occupied, and the excess Fe partially occupies the inter-
stitial site Fe(2), see [31] and Fig. 1(a). Thus, the more
appropriate formula for nominal �-FeðTe1�xSexÞz is
Fe1þyðTe1�xSexÞ.

While Fe1:080Te0:67Se0:33 remains tetragonal in the
superconducting state at 4 K [[31], Table I(c)], the parent
compounds Fe1:141Te and Fe1:076Te experience a first-order
magnetostructural transition, see Fig. 3, similar to that in
BaFe2As2 [19]. The semiconducting Fe1:141Te distorts to
an orthorhombic Pmmn structure below TS � 63 K, with
the a axis expanding and the b axis contracting, Fig. 3(c)
and [31], Table I(a). This results in the splitting of the (h0k)
Bragg peaks of the high-temperature structure, Fig. 2(b).
The orthorhombic distortion here, however, does not

double the unit cell, different from that observed in either
the LaFeAsO [32] or BaFe2As2 [19]. The metallic
Fe1:076Te has a monoclinic P21=m structure below TS �
75 K, [31], Table I(b). In addition to the differentiation
of the a and b axis [Fig. 3(d)], the c axis rotates towards the
a axis to � � 89:2�. Thus, the monoclinic distortion not
only splits the (200) but also the (112) Bragg peak,
Fig. 2(d). In the weaker first-order transition of Fe1:141Te,
a mixed phase exists in the pink-shaded region in Fig. 3(c).
At 55 K upon warming, 85% of the sample is orthorhombic
and 15% tetragonal. See Ref. [31] for the temperature
dependence of distances and angles between various
atoms.
The additional magnetic Bragg reflections of the mono-

clinic metal in Fig. 2(d) can be indexed by a commensurate
magnetic wave vector q ¼ ð12 0 1

2Þ, as previously reported

[33]. However, magnetic Bragg reflections of the ortho-
rhombic semiconductor in Fig. 2(b) cannot be indexed by
multiples of the nuclear unit cell. By performing single-

FIG. 2 (color online). Neutron powder diffraction spectra of Fe1:141Te and Fe1:076Te above and below the phase transition.

FIG. 1 (color online). (a) Crystal structure of �-Fe(Te,Se). Magnetic structures of (b) �-FeTe and (c) BaFe2As2 are shown in the
primitive Fe square lattice for comparison. Note that the basal square lattice of the PbO unit cell in (a) is a

ffiffiffi
2

p � ffiffiffi
2

p
superlattice of that

in (b).
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crystal neutron diffraction using the triple-axis spectrome-
ter BT9 at NIST, we determine the incommensurate mag-
netic wave vector q ¼ ð��0 1

2Þ, where � � 0:380, for

Fe1:141Te. The q determines that magnetic moments in
each row along the b axis are parallel to each other. The
rows of moments in an Fe plane modulate with the prop-
agating vector 2��=a, which is 45� away from that of
previous FeAs materials, see Figs. 1(b) and 1(c). From one
plane to the next along the c axis, magnetic moments
simply alternate direction. In the same magnetostriction
pattern as previously observed in the magnetic state of
NdFeAsO [34] and BaFe2As2 [19], the lattice contracts
in the b axis, along which the magnetic moments are
parallel to each other, and it expands in the a and c axis,
which are the directions of the antiferromagnetic align-
ment. Once again, the unusual coupling between the lattice

and magnetic degrees of freedom is what expected from
multiple d-orbital magnetism [15].
The observed magnetic powder spectra can be refined by

a collinear sinusoid model,

M lðRÞ ¼ Mlb̂ cosðq �Rþ�RÞ; (1)

where R is the position of the Fe, Ml the staggered mag-
netic moment, �R the additional phase at the Fe site. The

unit vector b̂ fixes the moment along the b-axis, and q is
the observed magnetic wave vector. Refined magnetic
parameters at low temperature are listed in Ref. [31]
Table I(a) and (b). However, for an incommensurate q, a
spiral model with the moment rotating in the ac plane,

M sðRÞ ¼ Ms½â cosðq �Rþ�RÞ þ ĉ sinðq �Rþ�RÞ	;
(2)

offers an equivalent description of the unpolarized neutron
diffraction results, with the relation between the respective
neutron diffraction cross sections

2�lðQÞ=hMli2 
 �sðQÞ=hMsi2: (3)

Thus, any linear combination of Eqs. (1) and (2) is also an
equivalent description. On the other hand, �l and �s are
partial cross sections for different channels of polarized
neutron scattering [35]. Therefore, they can be readily
determined using polarized neutrons.
We measured a Fe1:141Te single-crystal sample, aligned

in the (h0l) horizontal scattering plane, using polarized
neutron spectrometer Asterix at the Lujan Center of
LANL. The neutron spin is controlled to align either
perpendicular to the (h0l) plane (VF) or parallel to the
momentum transfer (HF). All four channels (þþ, þ� ,
�þ , �� ) in both the VF and HF configurations were
measured for the (001) and (�0 1

2 ) Bragg peaks. The flip-

ping ratio of the instrument is 10.3 as measured at the
nuclear (001) peak. The (�0 1

2 ) is proved magnetic by the

spin-flip scattering in HF. The normalized intensity of
(�0 1

2 ) in VF is 8.24(28) in the non-spin-flip (NSF) chan-

nels, and 4.13(20) in the spin-flip (SF) channels. After
correcting for the finite flipping ratio of the instrument,
we obtained �l=�s 
 INSF=ISF ¼ 7:91ð27Þ=3:37ð16Þ.
Therefore, the incommensurate magnetic structure for
Fe1:141Te is

M ðRÞ ¼ Ml þMs

¼ M½wb̂ cosðq �Rþ�R þ c Þ þ â cosðq �R
þ�RÞ þ ĉ sinðq �Rþ�RÞ	;

(4)

where w 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�l=�s

p ¼ 2:17ð6Þ, M ¼ Ml=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ w2

p
¼

0:76ð2Þ�B=Fe and c is an arbitrary phase between the
spiral and the sinusoidal components; see Fig. 1(b).
To understand whether the incommensurate magnetic

structure in the orthorhombic semiconducting phase is
locked or tunable, we examined another sample

FIG. 3 (color online). (a),(b) The magnetic Bragg peak (�, 0,
1=2) (blue symbols) and the splitting of the structural peak (200)
or (112) of the tetragonal phase (red symbols) show the thermal
hysteresis in the first-order transition. (c),(d) The lattice parame-
ters through the transition.
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Fe1:165ð3ÞTe by powder diffraction at BT1, [31], Table I(d).

The incommensurability is greatly affected and measures
at � ¼ 0:346, despite no appreciable differences in either
the moment or the phase � from Fe1:141Te in [31],
Table I(a). Thus, � can be tuned by varying the excess Fe
in the orthorhombic phase, and it reaches a commensurate
value 1

2 for the composition Fe1:076Te in the metallic mono-

clinic phase with less excess iron, see inset (a) of Fig. 4.
Having unveiled a tunable (��, ��)-type of anti-

ferromagnetic order in the parent compound Fe1þyTe,

it is natural to ask whether the new magnetic order sur-
vives in the optimal TC superconducting sample
Fe1:080Te0:67Se0:33. While there is neither long-range mag-
netic order nor structural transition, we observed pro-
nounced short-range quasielastic magnetic scattering at
the incommensurate wave vector (0.438, 0, 12 ), Fig. 4, using

SPINS at NIST. The temperature insensitive half-width-at-

the-half-maximum 0:25 �A�1 indicates a short magnetic
correlation length of 4 Å, approximately only two
nearest-neighbor Fe spacings. The concave shape of the
peak intensity as a function of temperature in inset (b)
indicates the expected diffusive nature of the short-range
magnetic correlations. This is very different from the case
of the (�, 0) SDW which is completely suppressed in the
optimal TC FeAs samples [18,22,25,27].

To summarize, the �-Fe(Te,Se) shares a common elec-
tronic structure with the previously reported FeAs-based
superconductor systems. Though the same (�, 0) SDW
order has been predicted [17], we show the presence of a
fundamentally different (��, ��) antiferromagnetic order
which propagates along the diagonal direction. The incom-
mensurability � in the orthorhombic semiconducting phase
is easily tunable with excess Fe and locks into a commen-
surate 1

2 in the monoclinic metallic phase. This magnetic

order, which survives as short-range order even in the

optimal superconducting state, cannot be the result of
Fermi surface nesting, which is along the (�, 0) direction
and delicately depends on electronic band filling for its
existence.
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FIG. 4 (color online). Short-range magnetic order in super-
conducting Fe1:080Te0:67Se0:33. The peak intensity as a function
of temperature is shown in inset (b). Inset (a) shows the incom-
mensurability � as a function of y for Fe1þyTe.
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