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We report that an achiral particle with anisotropic rigidity can migrate in the vorticity direction in shear

flow. A minimal ‘‘tetrumbbell’’ model of such a particle is constructed from four beads and six springs to

make a tetrahedral structure. A combination of two different spring constants corresponding to ‘‘hard’’

and ‘‘soft’’ springs yields ten distinguishable tetrumbbells, which when simulated in shear flow with hy-

drodynamic interactions between beads but no Brownian motion at zero Reynolds number, produces five

different types of behavior in which seven out of ten tetrumbbell structures migrate in the vorticity di-

rection due to shear-induced chirality. Some of the structures migrate in the same direction along the vor-

ticity direction even when the shear flow is reversed, which is impossible for permanently chiral objects.
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Microscopic biological objects, including cells, often
have complex and anisotropic internal structures. The me-
chanical response of such an object to an external field will
differ significantly from that of an object with uniform
internal structure. Although the dynamics in flows of rigid
particles with axisymmetric or chiral shape [1–5] and of
flexible particles or droplets with isotropic mechanical
properties [6–8] have been studied, there has been very
little investigation of the effect of anisotropic structure or
rigidity on the dynamics of a deformable particle in a flow.
Here, we therefore develop a very simple model of an
achiral particle with anisotropic rigidity and show by com-
puter simulations that in a shear flow at vanishing Reynolds
number it can deform into chiral shape and migrate in the
vorticity direction.

Fundamental studies of the dynamics of deformable
objects, such as polymer molecules, have long been con-
ducted using simple dumbbell, trumbbell, and multispring
models with minimal degrees of freedom [9–11]. A mini-
mal model of a deformable object with three-dimensional
anisotropic structure is a tetrahedron containing four beads
and six springs, which we call ‘‘tetrumbbell’’ (see Fig. 1).
Each of the six springs is a ‘‘FENE-Fraenkel (FF) spring’’
[12] with the same equilibrium length L but different
spring constant k, and its deformed spring length Q is
restricted to a range set by the parameter s:

fFF ¼ k
Q� L

1� ð1�Q=LÞ2=s2
Q

Q

for ð1� sÞ<Q=L< ð1þ sÞ: (1)

The FF spring avoids overlaps of beads or springs, which
would be unavoidable with Hookean springs under a strong
external flow. Note that the shape of the tetrumbbell is
achiral in equilibrium (i.e., it is a regular tetrahedron),

since all beads have identical hydrodynamic radius and
all springs have identical equilibrium length.
The shear-induced motion of a tetrumbbell is computed

according to the following discretized differential equation
for each bead:

r iðtþ �tÞ ¼ riðtÞ þ
�
vflowðriÞ þ

X4
j¼1

H ij � f j

�
�t; (2)

where riðtÞ is the position of bead i ð¼ 1; 2; 3; 4Þ at time t,
f i is the summation of the FF spring forces on bead i, and
the flow velocity field vflow is vflowðrÞ ¼ _�xyryex with _�xy

and ex being the shear rate and the unit vector in the
x direction, respectively. H ij is the Rotne-Prager-

Yamakawa hydrodynamic interaction tensor [11,13,14]
given by

H ii ¼ 1

6��a
I ; (3)

H ij ¼ 1

8��rij

��
1þ 2a2

3r2ij

�
I þ

�
1� 2a2

r2ij

�
rijrij

r2ij

�

if i � j and rij � 2a;

(4)

H ij ¼ 1

6��a

��
1� 9rij

32a

�
I þ 3

32

rijrij
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if i � j and rij < 2a: (5)
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FIG. 1. The ten distinguishable tetrumbbell structures con-
structed from four beads and six springs, each of which is either
a hard (H, solid line) or soft (S, dotted line) spring.

PRL 102, 246001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
19 JUNE 2009

0031-9007=09=102(24)=246001(4) 246001-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.246001


Here, rij ¼ ri � rj, I is the 3� 3 identity matrix, and a is

the bead radius. Using this model, we compute the re-
sponse of a tetrumbbell to shear taking into account its
hydrodynamic interactions through solvent motion.
Brownian motion and inertia are both neglected in this
study. Nevertheless, the dynamics of the tetrumbbell is
not time reversible due to two sources of nonlinearity,
namely, the nonlinearity of the FF spring force and the
nonlinearity that arises from the finite relaxation time of
the deformation of the tetrumbbell.

The model has three input parameters with physical
units: a (bead radius), � (solvent viscosity), and k (typical
FF spring constant). Therefore, we scale length and time by
a and � ¼ a�=k, respectively. The dimensionless shear
rate and the migration velocity in the vorticity direction
are given by �s ¼ _�xy�a=k and �vz ¼ Vcm

z �=k, where

Vcm
z is the center-of-mass velocity of the tetrumbbell in the

vorticity direction.
The spring parameters ðkn; snÞ, where n is spring index

(n ¼ 1; 2; . . . ; 6), are chosen to be either ‘‘hard’’
ðkhard; shardÞ ¼ ð1000k; 0:001Þ or ‘‘soft’’ ðksoft; ssoftÞ ¼
ðk; 0:5Þ for simplicity, and the equilibrium length of the
FF springs is set to L ¼ 5a. Within these specifications, ten
distinguishable structures of tetrumbbells can be con-
structed, which are shown in Fig. 1. Note that the structures
(3c) and (3c0) in Fig. 1 have hard backbones that possess
chirality through three hard springs, but the others lack
chirality in either particle or backbone shape, in the ab-
sence of flow. We computed the motion of tetrumbbells
with structure ð1aÞ; ð2aÞ; . . . ; ð5aÞ in a shear flow of
strength 0:002 � j�sj � 0:2 with time step �t ¼ 10�3,
with various initial orientations of the tetrumbbell relative
to the shear direction.

We find that all tetrumbbells except for (3b), (4a), and
(5a) migrate in the vorticity direction in shear flow. Five
types of migration are observed:

(i) Type M: the tetrumbbell migrates in the vorticity
direction and the direction of the migration (i.e., the þz
or �z direction) depends on the initial orientation of the
tetrumbbell.

(ii) Type A: the tetrumbbell migrates in the vorticity
direction in shear flow only above a threshold shear rate,
which is dependent on the initial orientation of the te-
trumbbell, and the direction of the migration also depends
on the initial orientation.

(iii) Type C: the tetrumbbell migrates in the vorticity
direction and the direction of the migration does not de-
pend on the initial orientation of the tetrumbbell.

(iv) Type N: the tetrumbbell does not migrate in the
vorticity direction in shear flow.

(v) Type M=N: the tetrumbbell shows migration of
either type M or N depending on the initial orientation of
the tetrumbbell.

Table I shows the migration type for each tetrumbbell
structure, and a typical migration history is shown in
Figs. 2 and 3 in terms of the center-of-mass position,

velocity, and conformation. In a steady shear flow, tetrumb-
bells of migration types M, C, and A deform and change
their conformation and migration velocity periodically,
with each cycle producing a net migration in the vorticity
direction. The tetrumbbell does not migrate when the
hydrodynamic interaction is turned off (i.e., H ij ¼ 0 for

i � j). It is also worth noting that the unit vector pointing
from the center of mass to a specific bead of the tetrumb-
bell follows a closed orbit at steady state, analogous to the
Jeffery orbit of a axisymmetric particle in shear flow [1].
Since a particle with achiral shape does not migrate in
shear flow in the vorticity direction because of the reflec-
tion symmetry of hydrodynamics in shear flow [2], the
migration of tetrumbbell can be attributed to the chiral
deformation induced by the shear flow. To quantify the
chirality of a tetrumbbell in motion, we introduce a chiral
deflection index �,

� ¼ ffiffiffiffiffiffi
G0

3
p

; (6)

G0 ¼ 1

3

� X
i;j;k;l¼1���4

½ðrij � rklÞ � ril�ðrij � rjkÞðrjk � rklÞ
ðrijrjkrklÞ2ril

�
:

(7)

Here, G0 is a chirality index proposed in Ref. [15] for
molecules, and � is the cube root of G0, making it propor-
tional to the shear rate _�xy at low shear rate for tetrumb-

bells. The chiral deflection index differs from zero if the
tetrumbbell deforms into a chiral geometry, and is invariant
under rotation, translation, and dilation, but changes sign
on reflection. As shown in Fig. 3, the tetrumbbell has chiral

TABLE I. Types of shear migration of different tetrumbbell
structures.

Structure of tetrumbbell 1a 2a 2b 3a 3b 3c 3c0 4a 4b 5a

Migration type A A M=N M N C C N M N
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shape in shear flow, and the instantaneous chirality induces
migration in the vorticity direction.

To evaluate the migration velocity of tetrumbbells of
migration types M, A, and C at steady state, the center-of-
mass velocity in the vorticity direction was averaged over
time for one cycle of deformation process (Tcycle),

j�ave
vz j ¼

��������
1

Tcycle

Z tþTcycle

t
�vzðt0Þdt0

��������; (8)

and plotted in Fig. 4. From dimensional analysis, we expect
j�ave

vz j ¼ funcð�s; ssoft; shard; khard=ksoft; L=aÞ. Since we
hold ssoft, shard, khard=ksoft, and L=a constant through our
simulations, this simplifies to j�ave

vz j ¼ funcð�sÞ. When
the shear rate is small enough that the nonlinearity of the
spring force and the effect of relaxation time of tetrumbbell
deformation are not significant, the relation between j�ave

vz j
and �s follows a quadratic power law:

j�ave
vz j ¼ Cstr�

2
s ; (9)

or

jVcm;ave
z j ¼ Cstrð�a2=kÞ _�2

xy; (10)

where Cstr is a positive constant unique to each structure of
tetrumbbell, and Vcm;ave

z is the time-averaged center-of-
mass velocity in the vorticity direction.

In the regime j�sj< 0:02 where the quadratic
power law holds, the stretch of the soft spring Qsoft is
0:85L & Qsoft & 1:15L, and the Weissenberg number Wi
is less than 0.3, where Wi ¼ _�xy�relax with �relax being the

relaxation time of the tetrumbbell deformation [16]. Since
the nonlinear effects in this regime of shear rate are small,
the magnitude of the chiral deflection of the tetrumbbell is
proportional to the shear rate. In general, the migration

velocity of a rigid chiral object Vrigid
z is a product of the

shear rate _�xy and a constant g that is determined by the

shape of the object [2],

V
rigid
z ¼ g _�xy: (11)

Therefore, the quadratic power law for the tetrumbbell
results from the proportionality between the perturbation
of g and the shear rate _�xy.

In the high shear rate regime (j�sj * 0:02), the qua-
dratic power law no longer holds because the magnitude of
the chiral deflection is nonlinear in the shear rate, and the
time-delayed motion caused by a finite Wi becomes non-
negligible. Also, the migrations type A of structures (1a)
and (2a) are triggered by a nonlinear effect because the
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migration of type A cannot be observed at all in the low
shear rate regime.

The quadratic power law, however, does not tell us the
direction of migration of a tetrumbbell. Although the mag-
nitude of the migration velocity only depends on the shear
rate, the direction of migration depends on the initial
orientation of the tetrumbbell except for (3c) and (3c0),
which have intrinsic chirality in their backbone and always
migrate in a direction that is determined by this backbone
chirality. Note that the backbone chirality, by itself, does
not lead to migration, since at rest the bead positions,
which produce the hydrodynamic effects, are achiral. The
chiral backbone does, however, determine the shear defor-
mation of the tetrumbbell, including its shear-induced
chirality.

Also, surprisingly, a switch of the shear direction from
�s ¼ �s0 to��s0 does not necessarily change the direc-
tion of migration. Although the tetrumbbells of migration
types A and C do change migration direction (i.e., fromþz
to �z direction or vice versa) upon reversal of the shear
direction, the tetrumbbells of migration typeM do not (see
Fig. 2). This is because the tetrumbbells of migration type
M change sign of the chiral deflection index upon reversal
of the shear direction, but those of migration types A and C
do not, as we confirmed by plotting the chiral deflection
index (see Fig. 3 for type M). For a rigid chiral particle,
which has an intrinsic chirality, the migration direction
must changewhen the shear direction is reversed according
to Eq. (11). The response of a tetrumbbell of migration
typeM to reversal of the shear direction is possible because
the chirality is not intrinsic but shear induced.

Our simulation results for simple tetrumbbells show the
possibility that an achiral deformable object with aniso-
tropic rigidity can migrate in the vorticity direction in a
shear flow due to shear-induced chirality. By setting the
simulation parameters to be a ¼ 20 ½�m�, � ¼ 100 ½cP�,

and k ¼ 1 ½mN=m�, we find a migration velocity of
3 ½�m= sec� at a shear rate of 10 ½sec�1� using the result
of our simulation ðj�ave

vz j;�sÞ ¼ ð3� 10�4; 0:02Þ in
Fig. 4. In practice, migration due to the shear-induced
chirality might be observed for a multiphasic particle
[17,18], which has two or more distinct compartments of
different elastic moduli. Another example will be an oil
droplet in water under shear, if the droplet encases a solid
object of comparable dimension to the droplet (see Fig. 5).
An oil droplet enclosing a solid object could act as a
particle with anisotropic rigidity. Depending on the shape
of the solid object, the complex might migrate in the
vorticity direction in a shear flow. Such a phenomenon
might be used to separate small objects with polydispersity
in size or shape.
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