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Stranski-Krastanow strained islands undergo a shape anisotropy transition as they grow in size, finally

evolving toward nanowires. This effect has been explained until now via simple energetic models that

neglect thermodynamics. We investigate theoretically the stability of strained nanowires under thermal

fluctuations of the long side. We find phase transitions from nanowires back to nanoislands as the

temperature is increased and as the height of the nanostructure is raised or lowered, and we predict regions

of phase coexistence. Our results are general, but explain recent data on the growth of erbium silicide on a

vicinal Si surface.
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The investigation of two-dimensional nanoislands has
provided fundamental understanding of the mechanism of
epitaxial growth. Instabilities in heterostructure growth are
exploited to form self-organized nanodots and nanowires
that are of much smaller size than similar nanostructures
realized on lithographically prepatterned substrates [1,2].
Typically, competition of plastic and elastic relaxation
processes in strained epitaxial layers drives their formation
[3,4]. In Stranski-Krastanow growth [3,5], where interac-
tions between adatoms and of adatoms with the surface are
comparable, both dislocated or single crystalline islands
can grow after the initial wetting layer has reached a
critical thickness. Formation of single crystalline rather
than dislocated islands depends on the material, the ampli-
tude of the lattice misfit, and the possible interplay of the
Asaro-Tiller-Grinfield instability [6,7]. It can be controlled
in many ways, e.g., by undulations and/or patterning in the
surface layers of the substrate [8] or by tuning areal island
densities and temperature [9].

It has been predicted and observed experimentally that
dislocation free islands in early stages of growth can
undergo a shape anisotropy transition as their size becomes
critical [10–12]. Eventually their growth becomes quasi-
one-dimensional, and they form perfect nano-objects with
well defined height and width, that is, nanowires. Previous
theoretical treatments have been based on simple energetic
models of the island or wire that include competition
between strain relief and surface energy. Although useful,
these models completely neglect thermal fluctuations
which are important in such quasi-one-dimensional sys-
tems because high entropic gains of the (thermodynami-
cally extensive) long sides can lead to various instabilities.

Our objective is thus to introduce thermal effects in the
theory within the context of a statistical mechanical model.
We find that above a critical temperature the wire does
indeed become unstable, and this temperature depends on
the threshold of the plastic relaxation of the film.
Moreover, we find that the wires become unstable as the

deposition continues at constant temperature. We explain
the observations of a recent set of experiments on the
growth of erbium silicide nanostructures on the vicinal
Si(001) surface that was studied at different postannealing
temperatures and coverages [13–15].
We first review the Tersoff and Tromp model of the

shape transition [10] on which more detailed studies have
been based [11,12]. By considering both surface energy
and strain relaxation, Ref. [10] arrives at the following
expression for the energy for unit area of a rectangular
island of dimensions L, X:
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the parameters d, �o depend upon surface energy and
strain. The surface density of energy in (1) is minimized
by a square island of size X ¼ L ¼ d and energy d2�o. Yet,
depending on the growth condition, islands can grow
metastably larger than the optimal size d2. Minimizing at
fixed area A ¼ XL, Tersoff and Tromp obtained a critical

area, Ac ¼ ðedÞ2, below which symmetric shapes, or X ¼
L ¼ ffiffiffiffi

A
p

, are energetically favorable and above which a
symmetry breaking occurs. That is, as the surface A in-
creases beyond the critical value, one of the lateral sizes,
say X, shrinks down from ed, asymptotically approaching
the equilibrium value d. The other side keeps growing
eventually linearly as L� A=d.
This asymptotic behavior can be deduced by taking the

limit for large L in (1) and thus obtaining the surface
energy for lateral growth

VðxÞ ¼ ��o
d

x
ln
xe

d
: (2)

The constraint on the area is not required anymore, and the
optimal lateral size is obtained via minimization of (2) as
x ¼ d. [We will from now on use lowercase x to denote the
finite edge, and upper case L for the long edge—‘‘long’’ as
in the thermodynamic limit (Fig. 1).]
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We will now explore the thermal stability of a long wire
whose lateral size dminimizes the asymptotic energy in (2)
under fluctuations of its long edges. We allow the lateral
edges x1ðlÞ, x2ðlÞ to fluctuate in the coordinate 0 � l � L.
The problem is simplified by the introduction of x ¼ x1 �
x2, xþ ¼ x1 þ x2. The elastic energy of those fluctuations
is thus simply T ¼ kx021 þ kx022 ¼ 1

2 kx
02 þ 1

2 kx
02þ. As the

term in xþ only contributes to equipartition, it can be
disregarded. The partition function in the continuum limit
is a Gaussian path integral over the allowed fluctuations

Zð�Þ ¼
Z Y

l

½dxðlÞ�e��
R

L

0
dl½ðk=2Þx02ðlÞþdVðxðlÞÞ�: (3)

Incidentally, in the case of infinitely stiff boundaries, or
k ! 1, the path integral in (3) becomes restricted to
straight lines xðlÞ ¼ xo, and one obtains for the size the
Tersoff and Tromp’s value d, minimum of V, plus thermal
fluctuations that never diverge at finite temperature, and
thus no phase transition.

Standard transformations [16,17] allow us to write (3) as
the trace
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of the one-particle, temperature dependent Hamiltonian
given by

Ĥ � ¼ � d

2�k

d2

dx2
þ �d2VðxÞ: (5)

The coefficient in front of the trace simply adds to the free
energy the equipartitive contribution of free oscillators (�
is the linear density of oscillators � ¼ K=k, with K the
microscopic spring constant). We thus only need to con-
cern ourselves with the diagonalization of the (temperature
dependent) effective Hamiltonian. In the limit of a long
wire, or L=d ! 1, the density operator in (4) projects on

the lowest bound state—provided that Ĥ� has one. One can

reproduce the previous calculation for the partition func-
tion and demonstrate that the probability of a lateral size x

is given by pðxÞ ¼ limJ!0þjc 0;J
� ðxÞj2 where c 0;J

� is the

lowest bound state of the operator Ĥ� þ Jx, where J is a

chemical potential. (There is a bath of adatoms around the
surface, and also a reservoir along the ‘‘infinite’’ L direc-
tion, so that we can safely assume J ¼ 0. Yet one could try
to envision different experimental situations when J might
play a role and ensure stability at any temperature.) Clearly

when Ĥ� has no bound states—which might happen for �

below a certain �c—then pðxÞ is flat, and we conclude that
the elongated structure is not stable at that temperature.
Thus the search for stability of long wires is reduced to the
problem of existence of a bound state in a suitable one-
particle Hamiltonian operator, a situation reminiscent of
localization or delocalization of one-dimensional interfa-
ces of the solid on solid model [18–20].
Before exploring this transition, one can immediately

show a relationship between the critical exponent of �x ¼R
xjc 0

�ðxÞj2dx� t�� and that of the specific heat C� t��

when t ¼ ðT � TcÞ=Tc ! 0�. Indeed, from (4) we have
for the free energy F ’ TLE0

�=d, where E
0
� is the energy of

the lowest bound state, while for T � T�
c one has E0

� �
dð2�kÞ�1 �x�2, since it is the exponential tail of the bound
state around infinity that dictates �x. Thus f� t2�, or � ¼
2ð1� �Þ. We show at the end that � ¼ 1.
The potential in (2) converges to zero slower than 1=x at

infinity, while at zero it goes to infinity slower than the
centrifugal energy; thus H�, for any value of coupling

constant (i.e., any temperature), has at least as many bound
states (excluding S waves) as the hydrogen atom: infinite.
Such a cursory look might convince the reader that nano-
wire formation should always be stable with respect to
thermal fluctuations. In fact it is the long-range behavior
of the potential that commands possible instability, but (2)
is clearly unphysical for large x; simple intuition suggests
that for large islands, energy density must be constant, as
plastic relaxation of the elastic strain becomes unavoidable
when the islands grow in size. Relaxation via dislocations
has been observed experimentally in nanoislands and has
already found to promote many complex phenomena [21],
only recently explored via simplified approaches [22,23].
Fortunately our scenario is simpler: islands grow in a single
crystalline manner until they reach a threshold size in
which dislocations appear. Once dislocations start to
form, they can coalesce, move, and make other disloca-
tions more likely. It is thus both reasonable and simple to
introduce an ad hoc plastic limit xp beyond which the

energy of the island simply grows linear with size.
We substitute the potential in (2), V ! Vp, with VpðxÞ ¼

VðxÞ when x < xp and VpðxÞ ¼ VðxpÞ ¼ Vp for x > xp.

VpðxÞ is now a well for x > 0 (Fig. 2) and thus might or

might not admit a bound state, depending on the value of�.
The Schrödinger problem for the potential in (2) has not
been solved yet, nevertheless the critical temperature cor-
responding to the disappearance of the lower bound eigen-
state can be obtained via a WKB approximation, which
works well when Tc is not too large [24]:

d x(l)

l L0

FIG. 1. The nanowire with lateral edges x1ðlÞ, x2ðlÞ allowed to
fluctuate in the coordinate l, 0 � l � L; xðlÞ ¼ x1ðlÞ � x2ðlÞ is
the relevant degree of freedom for our problem. The amplitude
of fluctuations is largely exaggerated in the figure.
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Tc ¼ 23=2
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For � > 1, gð�Þ is defined by

gð�Þ ¼
Z �

�0
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1
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s
ds: (7)

�0 is the lower zero of the integrand. (Note that as k ! 1
so does Tc; as mentioned above infinite stiffness would
suppress phase transition.)

Equations (6) and (7) link critical temperature to the
plastic limit. Figure 2 depicts the behavior of T as a
function of the threshold for dislocations xp, assuming all

the other parameters are constant. One would deduce that
in general stability can be achieved at higher temperatures
by pushing higher the single crystalline threshold. Yet the
phase transition was obtained in the limit d=L ! 0.
Consider now (4) and (5) for L=d large but finite. For T >
Tc, where Tc is the critical temperature, there are clearly no
nanowires, as there are still no bound states. When T < Tc,
the operator in (5) has (at least) one bound state, and yet the
density operator does not just project on the ground state; it

leaves some probability p / e�ðL=dÞjEo
�j of a jump from the

bound state to the continuum spectrum, a jump activated by
the small ‘‘pseudotemperature’’ d=L. In the proximity of
Tc, we obtain (see later) E

o
� ¼ �2�od

2ðTc � TÞ2=2T3
c ; p is

thus a Gaussian in T � Tc of relative width

�Tc

Tc

¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffi
Tc

�oLd

s
; (8)

which implies a gray zone of coexistence of both islands
and wires of the order of 10�1Tc (if we assume k of the
same order as �od, L=d� 102, and xp=d� 10� 100).

Notice that the width in (8) increases with Tc. That makes
it possible for a region of coexistence of islands and wires
to be accessible even when Tc is beyond practical reach.
This seems to be the case in Ref. [14], as explained later.
It is interesting to explore the behavior of the critical

temperature with deposition. In general the plastic limit as
well as �o, k, and d depend on island height h, surface
energy, and strain. Tersoff and Tromp found d=e ¼
�h expð�=2chÞ and �o ¼ 2ch=d, where � is proportional
to the surface energy, c to the strain energy, and � is a
number which depends on the contact angle [10]. Clearly,
the linear elastic constant k ¼ �h is also proportional to
the island height. In the simpler approach, the energy
balance xp½VðxpÞ � Vðxp=2Þ� ¼ �p provides a criterion

for the formation of a defect of energy (per unit length)
�p, which gives xp=d ¼ 4 expð�p=2ch� 1Þ. So, if we

neglect the dependence of �p upon temperature, we can

relate critical temperature with the island height and thus
obtain the critical line

TcðhÞ ¼ 2e�

�

ffiffiffiffiffiffi
�c

p
h2e�=2chg

�
4

e
e�p=2ch

�
: (9)

In Fig. 3 we plot (9) as a phase diagram for a nanowire or
nanoisland under the above assumptions, along with ex-
perimental results of Zhou et al. [14]. One sees that below a
certain temperature Tc;min the growth of a nanowire by

further deposition is always stable. Above Tc;min, deposi-

tion will cause growth in height until a critical value is
encountered, above which the wire becomes unstable.
Equation (9) also predicts a region of wire stability for
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FIG. 3. Phase diagram (T, h) from (9) and the experimental
findings of Zhou et al. [14]. Filled boxes denote nanowires,
empty boxes regions of coexistence, while diamonds correspond
to nanoislands (the relative coverage is 0.29, 0.73, 0.87, 1.16,
1.45, 2.03, 2.32, 2.90 monolayers). We have chosen our parame-
ters arbitrarily (yet reasonably) to provide a decent superposition

with Q. Cai’s results [14]:
�p

2c ¼ 6 nm, �
2c ¼ 1 nm, Tc;min ¼

548 �C. Note that for low h, where Tc diverges, the region of
coexistence of islands and wires is still experimentally acces-
sible, as discussed theoretically in the text. Note also the region
of nanowire stability with no transition for T < Tc;min and for

large heights h > 3:5 nm.
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FIG. 2. Top: the potential of (2) (dashed line) with plastic limit
set at xp ¼ 8d (solid line). Bottom: behavior of Tc (in units of

�T ¼ ��1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23k�od

3
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) as a function of the plastic limit xp.
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higher values of h. As Fig. 3 shows, the interval of in-
stability in h decreases in size with the temperature, un-
til it disappears below Tc;min. Depending on materials,

kinetic parameters, and other physical circumstances,
only a portion of the phase diagram of Fig. 3 might be
accessible.

Our predictions explain the experimental results of
Cai’s group on the self-organization of erbium silicide on
Si(001). They obtained phase transitions from nanowires to
nanoislands, both when increasing postannealing tempera-
tures at fixed coverage [13] and when increasing coverage
(and thus the height of nanostructures) at fixed postanneal-
ing temperatures as in Fig. 3 [13,14]. In a yet different
approach, the same group was able to control the efficiency
of the chemical synthesis of the silicide via different dep-
osition techniques, and could obtain nanostructures of
different heights (2.0, 1.5, 0.5 nm) at the same temperature;
again transition from nanowires to nanoislands was ob-
served as the height increased [15], as well as the coex-
istence zone.

Finally, let us tie up some loose ends. The WKB method
seems appropriate to compute the critical temperature but
not for critical exponents. It is clearly so for a case that can
be solved exactly, the square well. And yet, as the length
scale diverges at the transition, one expects the actual
shape of the well to become irrelevant to the exponents.
With the approximation gð�Þ ’ ð�� 1Þ=2, which works
fine for � of the order of 3–10, one finds that our critical
temperature corresponds to that of a square well of depth
�o and size a such that 4�oa

2 ¼ �oðxp � dÞ2. The problem
for the square well potential can be solved easily and

returns for the ground state Eo
� ¼ �2

2 �od
2ðTc � TÞ2=T3

c ,

and then 1= �x� t and thus f� t2 for t < 0 while f ¼ 0
for t > 0; f has no kinks; hence entropy is continuous at
the transition and there is no latent heat, but a discontinuity
in the specific heat. One can check that on the contrary a
WKB study of a square well (and also for our truncated

well) returns different exponents, 1= �x� t1=2, and thus a
latent heat.

In conclusion, we have studied the stability of nanowire
fabrication under thermal fluctuations. We find phase tran-
sitions from wires to islands, both by increasing tempera-
ture and the height of the nanostructure. Plasticity of
extended films plays a crucial role in our analysis. Our
results show that the transition can be more or less sharp
depending on the average length of the wires, and is
preceded by regions of coexistence of wires and islands.
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