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We investigate the effect of optical lattices on the BCS superfluidity by using the Gorkov–Melik-

Barkhudarov (GMB) correction for a two-component Fermi gas. We find that the suppression of the order

parameter is strongly enhanced by the lattice effects. The predictions made by the GMB corrections are in

qualitative and, for the cases studied, quantitative agreement with previous quantum Monte Carlo results.

We discuss how the GMB correction extends the validity of the mean-field theory to a wider range of

tunable optical lattice systems in different dimensions.
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Bardeen, Cooper, and Schrieffer (BCS) explained super-
conductivity by the condensation of fermion pairs in the
presence of arbitrarily attractive interaction [1]. Based on
the idea of the BCS pairing, in dilute Fermi gases, the
critical temperature was derived in terms of scattering
length [2,3]. Gorkov and Melik-Barkhudarov (GMB) ex-
tended this calculation by incorporating many-body ef-
fects, which turned out to reduce the critical temperature

by a factor ð4eÞ1=4 � 2:22 [4]. Fermionic superfluidity has
recently attracted renewed attention in connection with the
realization of ultracold atomic gases that allow direct ob-
servation of quantum many-body phenomena in highly
controllable environments [5–7]. In particular, optical lat-
tices are a perfect platform for emulating crystalline struc-
tures of superconductors. While indirect evidence of
superfluidity in a system with an optical lattice has recently
been reported [8], the full characterization of fermionic
superfluidity and strongly correlated quantum states in
optical lattices is still under active study, both theoretical
and experimental [9,10]. In this Letter we focus on how the
lattice potential influences the BCS-type superfluid transi-
tion by employing the GMB correction.

We calculate the mean-field BCS order parameters at
zero temperature in three- and two-dimensional (3D and
2D) lattices with various settings including the crossover
from 3D to 1D. In all the ranges of lattice parameters
examined, we find that the induced interaction introduced
by the correction leads to remarkable reduction in the order
parameter from the usual BCS result. This deviation turns
out to be much more pronounced in the lattices than in
homogeneous gases and becomes increasingly significant
at higher fillings. In particular, in 2D, we find quantitative
agreement with previous quantum Monte Carlo (QMC)
calculations for the cases studied. Furthermore, near half
filling in 2D, the rapid decreasing behavior of the order
parameter is in qualitative agreement with the QMC pre-
dictions. At half filling in 2D, the induced interaction
diverges because of Fermi surface nesting. This divergence
is connected to the signature of the charge density waves,
known to coexist with superfluidity at half filling in 2D.

We consider a system composed of two different fermi-
onic species denoted by " and # . Each component is in a
lattice with adjustable tunneling strengths t#� and t"� in

direction � 2 fx; y; zg. When the lattice potential is
sufficiently deep so that we can consider only nearest-
neighbor tunnelings and on-site interactions, the system
is described by the Hubbard Hamiltonian H ¼
�P

�;�

P
i�
t��K�i� þU0

P
in̂"in̂#i ��

P
�;in̂�i, where

K�i � ĉ y
�iþ1 ĉ �i þ ĉ y

�i ĉ �iþ1, and ĉ �;iðĉ y
�;iÞ is the an-

nihilation (creation) operator for atoms of type � at a site
i � ðix; iy; izÞ. The chemical potential and density operator

are denoted by � and n̂�;i, respectively. We consider

negative interaction strengthsU0. For noninteracting gases,
the above Hamiltonian is diagonalized with dispersion
��ðkÞ ¼ 2

P
�t��½1� cosðk�Þ� ��, where the lattice

spacing is chosen to be unity. In the weak coupling regime,
using the standard BCS theory with this dispersion and the
interaction U0, without many-body corrections, one recov-
ers the usual BCS prediction for the critical temperature in
the long wavelength limit. However, because the scattering
length a gives exponential contribution to the critical
temperature as Tc / expð��=kFjajÞ, where kF is the
Fermi momentum, a small correction to the interaction
term kFa can considerably change Tc even in the weak
coupling regime. For instance, a second-order correction �
in kFjaj ! kFjajð1þ �kFjajÞ leads to Tc ! e�Tc.
For a two-component Fermi gas with an s-wave inter-

action between components, the relevant second-order
correction to the effective interaction is represented by
the diagram in Fig. 1(a), which describes the exchange of
density and spin fluctuations [11,12]. The diagram leads to
the induced interaction term, which can be derived for an
infinite-size system in D dimensions as

Uindðp;kÞ ¼ �U2
0

Z dq

ð2�ÞD
f";pþkþq � f#;q

�"ðpþ kþ qÞ � �#ðqÞ ; (1)

where the Fermi distribution f�;k ¼ 1=½1þ
expð���ðkÞÞ�, with � ¼ 1=kBT. There are two noticeable
properties in Eq. (1). First, Uind is always positive. Thus,
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this correction screens the negative interatomic potential,
which consequently reduces the critical temperature.
Second, the static Lindhard function, representing the
spin or density susceptibility �0 of a noninteracting gas,
is found in Uind if there is no difference in the energy
dispersion between the components, or simply t#� ¼ t"�,
which is the case that we mainly consider here.

In the weak coupling regime, the induced interaction
correction near the Fermi surface dominantly contributes
to the calculations of the BCS order parameter and the
critical temperature [11,12], and then the effective interac-
tion is approximately given by only the Fermi surface
momenta. Averaging Uindðp;kÞ over the Fermi surface,
the induced interaction becomes hUindi ¼ 1

jS"jjS#j �R
S" dSp

R
S# dSkUindðp;kÞ, where S� denotes the Fermi

surface of the component � and jS�j ¼
R
S�

dS is the

area. Finally, the effective interaction is written as Ueff ¼
U0 þ hUindi. This effective interaction replaces the inter-
atomic interaction in calculations. Having other parame-
ters fixed, Ueff becomes zero when U0 equals
Uc � �U2

0=hUindi. The susceptibility of an interacting

gas is given as �0=ð1þU0�0Þ within the random phase
approximation, where �0 is the susceptibility of the non-
interacting gas. At U0 ¼ Uc, this quantity diverges, often
indicating a possibility of charge ordered phase. Our ap-
proach is formally valid below Uc, and with the GMB
correction, the criterion for the weak coupling regime
can be established by Uc � U0 < 0.

We calculate zero-temperature order parameters by us-
ing this effective interaction Ueff in the mean-field formal-
ism [13,14]. The diagram in Fig. 1(a) representing the
induced interaction is relevant in normal states, and thus
the critical temperature Tc has been of interest in previous
studies. However, in the weak coupling limit, the validity
of the induced interaction can be readily extended for the
calculation of the zero-temperature order parameter �
because the contribution of the broken symmetry phase is
expected to be of higher order in � that becomes very
small. Moreover, with U � Ueff , we confirm that a general
relation 2�=kBTc � 3:53 [15,16] still holds in lattices, as
shown in Fig. 1(b), in the weak coupling regime. The
calculation of � is computationally less demanding than

Tc but gives a concise picture of the transition. At very low
filling factors (small �), one recovers the well-known
prefactor 2.22 in comparison between the usual BCS result
and our calculation with the correction in Ueff . In contrast,
as the filling factor increases, the reduction of the order
parameter with the correction becomes much more subtle
in a lattice than indicated by the prefactor in continuum.
Figure 2 shows the effect of the induced interaction in

isotropic 3D lattices. We find that the order parameter �
with the correction shows a dramatic deviation from the

usual BCS result �ð0Þ without the correction. The ratio

�ð0Þ=� turns out to be nearly 25 at half filling, which
implies that the usual BCS prediction largely overestimates
the order parameter and critical temperature. While the
order parameter�with the correction is maximized around
� ¼ 4t where the Fermi surface reaches the Brillouin zone
boundaries, it decreases substantially at higher filling fac-
tors because of increasing contributions of states with pþ
kþ q in Eq. (1) outside the first Brillouin zone. This
deviation from the usual BCS result that we find here is
qualitatively consistent with the previous study of the 1=D
correction in high dimensions [17], where the order-of-
unity reduction of the order parameter was estimated at
half filling. However, our calculations in 3D lattices reveal
much more significant suppression in � with the GMB
correction. In all the figures, the curve for jUcj provides a
simple estimate of the area in the parameter space ðU0; �Þ
where the GMB correction can extend the validity of the
BCS mean-field theory. The range of U0 in this space
decreases as � increases towards half filling in 3D and
2D lattices, which may affect the accuracy. Particularly in
2D, half filling is not included in this space because of
divergent hUindi.
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FIG. 2 (color online). Three-dimensional lattices. The order
parameters � (with the GMB correction) and �ð0Þ (the usual
BCS result) are calculated with U0 ¼ �3t as a function of
chemical potential �. The comparison between � and �ð0Þ
shows an increasing deviation as � increases. The ratio
�ð0Þ=� becomes �25 at half filling (� ¼ 6t). The inset shows
comparison between the magnitude of the interactions. Here and
in the other figures, the critical coupling jUcj (see text) allows
one to estimate the ranges of jU0j and � where the BCS mean-
field theory with the GMB correction is applicable.
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FIG. 1 (color online). (a) The diagram representing the in-
duced interaction Uindðp;kÞ. Arrowed lines and dashed lines
describe fermionic propagators and the coupling U0 between the
atoms. (b) Equivalence between the zero-temperature order
parameter � and the critical temperature Tc in the weak coupling
regime.
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In 2D lattices, the order parameter � decreases very
rapidly near half filling as the screening by the induced
interaction dominates (see Fig. 3). This rapid decrease of�
near half filling is in agreement with the previous QMC
results on the critical temperatures [18,19]. In contrast, the
usual BCS mean-field calculation without the correction

suggests a monotonically increasing order parameter �ð0Þ
when approaching half filling. At lower filling factors, the
order parameter with the GMB correction turns out to be
around 5 times smaller than the one without the correction,
which is consistent with other previous estimations of
many-body effects [15,20,21]. At higher � close to half
filling, the deviation from the usual BCS theory becomes
even more substantial and leads to highly suppressed order
parameter near half filling.

At half filling, it is known that the 2D attractive Hubbard
model has the charge-density-wave order and the pairing
order coexisting in the ground state, and the critical tem-
perature of the superfluid transition goes to zero. Our
calculations show that the induced interaction logarithmi-
cally diverges because of the Fermi surface nesting, mak-
ing the denominator in Eq. (1) infinitesimally small with
the nesting vector pþ k ¼ ð��;��Þ, for all q at the
Fermi surface, by mapping one side of the Fermi surface
onto the other side [see Fig. 3(d)]. Despite the tendency for
the order parameter � to vanish when approaching half
filling, the order parameter is not well defined with the
large correction in our perturbative approach. However,
this divergence of the induced interaction means that, for
arbitrary small U0, the susceptibility diverges. It thus pro-
vides the connection to a different type of phase that cannot
be anticipated by the usual BCS mean-field theory. The

divergent Lindhard function appearing in the correction
term can be interpreted as the signature of the charge
density waves [22].
For direct comparison with the QMC values of Tc in 2D

lattices, we have used U0 ¼ �4t. With the GMB correc-
tions, we obtained � ðTcÞ � 0:07t (0:04t), 0:03t (0:02t),
0:008t (0:005t) at the filling factors (jUcj’s) of 0.2 (7:3t),
0.25 (6:2t), 0.3 (5:4t). The farther away Uc is from U0, the
more accurate � is expected. The QMC result kBTc �
0:05t at quarter filling [18,19] is remarkably close to our
value of �, and the results in [23] are of the same order of
magnitude as ours. Note that the usual BCS mean-field
calculations for these parameters would give results that
are about 10–35 times larger than the QMC and our GMB
corrected mean-field results.
Motivated by the fact that anisotropy is easily control-

lable in optical lattices, we now explore dimensional cross-
over from 3D to 1D by introducing directional difference in
the tunneling strengths t�. For this purpose, we define the
lattice anisotropy as a ratio of the tunneling strengths, ~t �
ty=tx ¼ tz=tx, with which one can change the dimension-

ality from 3D (~t ¼ 1) to 1D (~t ¼ 0). Figure 4 shows the
effect of the lattice anisotropy on the induced interaction
and the order parameter. As the anisotropy evolves with ~t,
the screening by the induced interaction becomes stronger
and finally diverges in the limit of 1D because of Fermi
surface nesting.
Similar to isotropic 3D cases, the order parameter � in

the anisotropic lattice also shows highly suppressed values

compared with the usual BCS result �ð0Þ. While the tran-
sition from 3D to 1D appears continuous in the induced
interaction hUindi, we identify two special points of ~t
indicating structural changes of the Fermi surface. First,
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FIG. 3 (color online). Two-dimensional lattices. (a) The effec-
tive interaction Ueff and (b) the order parameter � are calculated
with U0 ¼ �1:5t. The usual BCS mean-field result �ð0Þ shows
very large deviation from � with the GMB correction, exhibiting
�ð0Þ=� � 10 near half filling � ¼ 4t. (c) Logarithmic diver-
gence of the GMB correction and (d) Fermi seas (shaded area) at
half filling indicating the nesting of Fermi surfaces (dashed lines)
with momentum transfers pþ k ¼ ð��;��Þ.
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FIG. 4 (color online). Crossover from 3D to 1D. (a) The
induced interaction hUindi and (b) the order parameter � as a
function of the lattice anisotropy ~t � ty=tx ¼ tz=tx in anisotropic

three-dimensional lattices. In (b), the usual BCS mean-field
results �ð0Þ without the correction is given for comparison.
(c) Fermi surfaces projected to kx � ky space at ~t ¼
0:26; 0:25; 0:24; 0:05 (from center). The chemical potential is
fixed at � ¼ 2tx, and U0 ¼ �3tx is used in the calculations.
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hUindi has a kink around ~t ¼ 0:5 at which � begins to
decrease. The Fermi surface is closed originally in the
3D lattice with the given chemical potential � ¼ 2tx.
With decreasing ~t, the Fermi surface becomes deformed,
and then at ~t ¼ 0:5, the Fermi surface becomes open. The
second is a bump of hUindi near ~t ¼ 0:25 at which a
dimensional change of the Fermi surface occurs and the
nesting effect develops to escalate hUindi. As plotted in
Fig. 4(c), finally at ~t ¼ 0:25, the surface completely opens
in the ky and kz directions and splits into two disconnected

sheets causing the nesting effect.
However, in the quasi-1D regime, it turns out that the

parameter space given by Uc does not cover the low ~t
region, and our calculation predicts a vanishing order
parameter at low ~t, which deviates from previous rigorous
studies of the Hubbard model. In the attractive Hubbard
model in quasi-1D, the spin gap and the critical tempera-
ture are finite [24]. In the limit of 1D, the gap is still finite
though the critical temperature goes to zero [25]. Singlet
superfluidity dominates in the ground state, but there is no
true long-range order in the 1D Hubbard model [26].

We have also considered the problem of the fermions in
component-dependent lattice potentials [27] where each
component experiences a different tunneling strength in a
lattice. This difference in tunneling in a lattice is analogous
to unequal effective masses of Fermi gases in continuum.
In 3D lattices, we have found that the screening effect of
the induced interaction becomes stronger as the difference
between the tunneling strengths increases, which agrees
well with the results for homogeneous gases [12,28] where
similarly the stronger screening effect at the larger mass
imbalance was found.

In conclusion, we have found that the presence of the
optical lattices substantially strengthens the effect of the
GMB correction on the BCS superfluidity. The consequent
suppression of the order parameter is found to be much
beyond the ratio 2.22 predicted in homogeneous gases,
which agrees with the estimations of other previous
many-body correction studies at low filling factors. As
the filling factor becomes higher, the inclusion of the
correction becomes increasingly important. For instance,
the order parameter turns out to be almost 25 times smaller
with the correction than the usual BCSmean-field results at
half filing in 3D lattices. Moreover, the behavior of the
order parameter in 2D lattices shows excellent agreement
with the previous QMC values. Naturally, when the cor-
rection becomes very large, our perturbative approach
breaks. The divergence of the correction is related to the
phase at half filling in 2D where superfluid order and
charge-density-wave order coexist.

One of the general shortcomings of a mean-field theory
is that it gives a valid approximation only in high dimen-
sions. Particularly for BCS superfluidity, our findings sug-
gest that the effective theory with the many-body
correction to the interatomic interaction can significantly
extend the applicability of the mean-field calculations in

the lower dimensions, namely, 3D and 2D, and in the
crossover from 3D to 1D lattices, in spite of the obvious
failure in the strict 1D limit. With the GMB correction, the
simple mean-field calculation can also provide quantita-
tively reliable values in a wider range of the coupling
strength, without sophisticated QMC calculations. The
unanticipated large suppression of the order parameter at
high filling factors highlights the practical importance of
our results, which may provide a new insight to the issue of
the critical temperature in future realizations of fermionic
superfluids in optical lattices.
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