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Anomalously fast equilibration of the electron distribution function to a Maxwellian in gas-discharge

plasmas with low temperature and pressure, i.e., Langmuir’s paradox, may be explained by electron

scattering via an instability-enhanced collective response and hence fluctuations arising from convective

ion-acoustic instabilities near the discharge boundaries.
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The scattering of electrons in low-pressure gas dis-
charges has presented an anomaly since the earliest days
of plasma physics research. A seminal paper by Langmuir
[1], reported measurements showing that the electron ve-
locity distribution function (EVDF) equilibrated to a
Maxwellian much closer to the discharge boundaries
(which selectively remove high energy electrons) than
could be explained by the kinetic theory of scattering via
their individual Coulomb electric fields. In this Letter, we
consider details of the plasma-boundary transition and
show that an instability-enhanced collective response and
hence fluctuations, due to ion-acoustic instabilities in the
presheath of these discharges, causes electron-electron
scattering to occur much more frequently than it does by
Coulomb interactions alone.

This collective response arises from the instability am-
plification of thermal fluctuations; it effectively extends the
range over which particles interact beyond the Debye
sphere in which Coulomb interactions are confined. Since
these ion-acoustic instabilities convect out of the plasma
before reaching nonlinear levels, turbulence theories are
not applicable in describing the enhanced electron scatter-
ing. The Boltzmann H theorem remains valid when this
collective response is present [2] and a Maxwellian is the
unique equilibrium which is established at a rate rapid
enough to be consistent with Langmuir’s measurements.

In his work developing the fluorescent lamp, Langmuir
often used a spherical discharge tube approximately 3 cm
in diameter which was made of glass and energized by
electrons emitted from a hot filament [1]. He discovered
that nearly all of the discharge was a quasineutral plasma
but that because electrons diffused to the boundaries much
faster than the more massive positively charged ions, a thin
electric field, which he named a sheath, surrounded the
plasma and acted to reflect most of the incident electrons so
that the electron and ion fluxes balanced at the boundary.
For such an ambipolar ion sheath, the potential drops

e��s � �Te ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�me=Mi

p
(�5Te for mercury) in only

a few electron Debye lengths �De �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=4�ene

p
. It was

later shown that an additional, but much weaker, presheath
electric field is also present which accelerates the ion fluid

speed to the sound speed, Vi � cs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=Mi

p
at the

presheath-sheath boundary. This result is commonly attrib-
uted to Bohm [3], but it was also appreciated in Langmuir’s
earlier works deriving the ‘‘plasma balance equation’’ [4].
The potential in the presheath of these discharges typically
drops e��ps � Te=2 over a distance characteristic of the

ion-neutral collision mean free path �i=n � �De.
In his apparatus, Langmuir measured the EVDF using an

electrostatic probe (now called a Langmuir probe) and
found that it was Maxwellian at all velocities despite the
fact that his calculated electron-electron scattering colli-

sion length �e=e was much longer than the tube diameter.
Langmuir expected significant depletion of the EVDF for

vk * vkc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e��s=me

p
. Here the k direction is parallel

to the sheath electric field (perpendicular to the bounding
surface). It was unexplainable how his discharge could
remain lit because the vast majority of ionization events
were attributed to the very same electrons in the tail of the
Maxwellian EVDF (rather than filament emitted electrons)
that his theory predicted to be missing. Langmuir’s mea-
surements implied that some anomalous mechanism for
electron scattering must have been present which was
capable of boosting the velocity of many electrons and
rapidly establishing the Maxwellian equilibrium. His mea-
surements and their implication were later named
Langmuir’s paradox by Gabor et al [5] and today remain
a serious discrepancy in the kinetic theory of gas dis-
charges. Analogies to it have also since been drawn in
the context of the evolution of galaxies as gravitational
plasmas [6].
Several ideas have been proposed attempting to explain

Langmuir’s paradox. These include the possibility of cir-
cuit oscillations interfering with probe measurements of
the EVDF [1], scattering of electrons by photons [1] and by
sheath oscillations [5], and due to the electronic polar-
izability of neutral gas atoms or molecules [7]. More recent
work [8] has developed a ‘‘nonlocal approximation’’ to
electron kinetics claiming that there may be no paradox.
None of the previous work has given a definitive answer to
Langmuir’s paradox.
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Oscillations in the MHz frequency range have been
measured near sheaths [5], but no theory has been proposed
to describe their origin or suggest how they lead to quick
equilibration to a Maxwellian. We propose that these os-
cillations are ion-acoustic instabilities, which are in the
MHz range. To show that they lead to a Maxwellian we
employ a theory derived in Ref. [2] that extends the
Lenard-Balescu kinetic theory [9] to include instability-
enhanced fluctuations that have not reached a nonlinear
level. Thus the theory is applicable for absolute instabil-
ities in a finite temporal domain, or for convective insta-
bilities in a finite spatial domain. This theory is well suited
to describing the effects of ion-acoustic instabilities in the
presheath because they convect out of the plasma while
still in their linear growth phase.

Other instabilities may also be present and lead to
instability-enhanced collisional effects. For example, fila-
mentary discharges, such as Langmuir’s, have a small
population of high energy electrons that may cause a
bump-on-tail instability. Two-stream instabilities may be
present in presheaths when there are multiple species of
ions, or if some ions are multiply charged. However, ion-
acoustic instabilities are universal in presheaths of
gas discharges with low temperature and pressure.

We apply the kinetic theory to the same discharge pa-
rameters that Langmuir used in his original experiments
[1]. This was a mercury plasma with electron (plasma)
density ne � 1011 cm�3, neutral density � 1013 cm�3

(0:3 mTorr), and ion and electron temperatures of Ti �
0:03 eV and Te � 2 eV, respectively.

The evolution of the distribution function for any species
s is governed by the plasma kinetic equation dfs=dt ¼P

s0Cðfs; fs0 Þ, in which d=dt ¼ @=@tþ v � @=@xþ E �
@=@v is the convective derivative. Here, Cðfs; fs0 Þ is a
collision operator describing the evolution of fs due to
collisions with each plasma species s0 including itself (s ¼
s0). The collision frequency thus scales with the magnitude
of the collision operator �s=s0 � Cðfs; fs0 Þ=fs.

The Lenard-Balescu equation [9] provides an accurate
collision operator when the plasma is stable; it captures the
physics of Coulomb interactions between individual parti-
cles as well as effects that arise from the collective re-
sponse described by a general plasma dielectric function.
However, when applied to this discharge, it predicts a
scattering collision length similar to Langmuir’s estimate
and thus cannot explain the paradox. The conventional
results obtained from Fokker-Planck [10] or Landau theory
[11] can be obtained from Lenard-Balescu theory assum-
ing an adiabatic dielectric response, "̂ � 1þ 1=k2�2

De.
In Ref. [2] the Lenard-Balescu formalism was extended

to allow for unstable plasmas as long as the corresponding
fluctuation levels of the density and electric field remain
low enough that a linear perturbation analysis is valid.
These effects were included in the derivation by allowing
positive growth rates which result when the imaginary part

of the roots of the dielectric function are positive
"̂ðk; !jÞ ¼ 0 ) Imf!jðkÞg> 0. After inverting Laplace

transforms, terms that scale as expð�i!jtÞ emerge and

produce an instability-enhanced collective response.
The resulting collision operator is

Cðfs; fs0 Þ ¼ � @

@v
�
Z

d3v0Qðv; v0Þ �
�
1

ms0

@

@v0
� 1

ms

@

@v

�

� fsðvÞfs0 ðv0Þ (1)

in which

Qðv; v0Þ ¼ 2q2sq
2
s0

ms

Z
d3k

kk

k4
�ðk � ðv� v0ÞÞ

�
�

1

j"̂ðk;k � vÞj2 þ
X
j

��ð!R;j � k � vÞe2�jt

�jj@"̂ðk; !Þ=@!j2!R;j

�

(2)

is the collisional kernel. The first term in Eq. (2) constitutes
the Lenard-Balescu equation where collective interactions
in a stable plasma are described by j"̂ðk;k � vÞj2. In a low-
pressure gas-discharge plasma, electrons are typically
adiabatic so the Lenard-Balescu equation reduces to the
Fokker-Planck or Landau’s equation. The second term in
Eq. (2) describes the enhanced collective response that
arises when instabilities amplify the background thermal
fluctuations of the plasma. This term grows exponentially
according to the growth rate �j of each excited mode jwith

real frequency !R;j. Before the instability amplification,

the second term is typically �1= ln� (� ¼ �De=bmin �
12�ne�

3
De) smaller than the first term; but as the instabil-

ities grow, it can eventually dominate.
According to Eq. (2), the collisional kernel and the

collision operator can be described as the sum of contri-
butions from stable plasma interactions and instability
enhancements. Thus we write Q ¼ QLB þQIE where the
subscript LB refers to the Lenard-Balescu contribution and
IE to the instability-enhanced contributions to the colli-
sional kernel.
The collision operator of Eqs. (1) and (2) obeys [2] many

of the same physical properties as the Lenard-Balescu
collision operator [9]. These include conservation of den-
sity, momentum, and energy as well as Galilean invariance
and the Boltzmann H theorem. The Boltzmann H theo-
rem states that dH =dt 	 0, in which H � R

d3vfðvÞ�
lnfðvÞ is the H functional (entropy increases until equi-
librium). Furthermore, and most importantly here, the
Boltzmann H theorem was extended [2] to show that a
Maxwellian is the unique equilibrium solution. Thus, the
plasma evolves to a Maxwellian not only in stable plasmas,
but also in plasmas with linear instabilities.
Because it is the equilibrium solution, the collision

operator for electron-electron collisions vanishes
[Cðfe; feÞ ¼ 0] if fe is a Maxwellian. Estimating @=@v�
1=vTe, where vTe �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te=me

p
is the electron thermal
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speed, Eq. (1) shows that the electron-electron collision
frequency scales as

�e=e � n

mev
2
Te

ðQe=e
LB þQe=e

IE Þ (3)

in which the scalars Qe=e
LB and Qe=e

IE represent the dominant

contributions of the dyads Qe=e
LB and Qe=e

IE . Evaluating Eq.
(2) for the Lenard-Balescu term using an adiabatic electron
response yields

Q e=e
LB � 2�e4 ln�

me

�
u2I � uu

u3

�
(4)

in which u � v� v0 and the short wavelength limit of the
k-space integral was cut off at 1=bmin where bmin is the
minimum impact parameter [10]. Since u� vTe, the col-
lision frequency due to particle-particle interactions is

�e=e
LB � !pe

8�n�3
De

ln�: (5)

For Langmuir’s characteristic plasma �e=e
LB � vTe=�

e=e
LB �

28 cm.

A more rigorous analysis reveals that �e=e
LB � 1=v3, as

does �e=e
IE . Although we are interested in the truncated tail

which concerns electrons with a speed a few times that of

vTe, for simplicity we calculate �e=e at v � vTe. Since both
the Coulomb and instability-enhanced contributions have
the same 1=v3 speed dependence, this estimate can be used
to compare the relative contribution from each scattering
mechanism.

Estimating Qe=e
IE requires the plasma dielectric, which

for low-pressure gas discharges is

"̂ ¼ 1þ 1

k2�2
De

� !2
pi

ð!� k � ViÞ2
þ i

ffiffiffiffi
�

p
k2�2

De

!

kvTe

; (6)

in which we assume that the wave phase speed is
slow compared to the electron thermal speed, !=kvTe 

1, and fast compared to the ion thermal speed,
ð!� k � ViÞ=kvTi � 1. We have also used the essential
property of the example plasma that Ti=Te 
 1, which
implies negligible ion Landau damping.

Estimating Qe=e
IE also requires the dispersion relation,

defined by the roots of the plasma dielectric, which in
this case represent one growing and one damped ion-
acoustic mode

!� ¼
�
k � Vi � kcsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2�2
De

q
��
1� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�me=8Mi

p
ð1þ k2�2

DeÞ3=2
�
:

(7)

We will use the notation ! ¼ !R þ i� where a positive �
represents a growth rate. A growing solution thus exists as

long as the ion fluid speed is large enough: jk � Vij>

kcs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2�2

De

q
. In deriving Eqs. (6) and (7), we have

assumed a Maxwellian EVDF. A solution accounting for
direct electron loss for vk � vkc was also calculated, but

resulted in only negligibly small Oð expð�v2
kc=v

2
TeÞ �

vTe=vkcÞ 
 1 corrections.

As described in detail in Ref. [2], the expð2�tÞ term in
Eq. (2) must be calculated in the rest frame of the unstable
mode. Since the ion-acoustic instability is convective,

2�t ¼ 2
Z x

xoðkÞ
dx0 � vg�jvgj2

; (8)

in which vg � @!R=@k is the group velocity, xoðkÞ is the
location in space where the mode wave vector k becomes
unstable, and the integral dx0 is taken along the path of the
mode. An important consequence is that, since !� and xo

have no explicit time dependence, fe will change with
position, but not in time, in the laboratory frame. The
plasma can thus remain in a steady state and the EVDF
will equilibrate to a Maxwellian at a distance from the

sheath determined by �e=eðxÞ.
In principle, the spatial integral in Eq. (8) requires

integrating the profile of � and vg, which change through

the presheath due to variations in the ion fluid speed and
the electron density, as well as knowing the spatial location
xoðkÞ at which each wave vector k becomes excited. In
estimating Eq. (8) we assume that changes due to spatial
variations are weak, and we account for xoðkÞ by only
integrating over the unstable k for each spatial location x.
Following these approximations we obtain 2�t � 2x�=vg.

Using Eq. (3) and this estimate in the k integral in Eq. (2)
leads to an effective collision frequency due to instability-
enhanced collective interactions:

�e=e
IE � �e=e

LB

8 ln�

1þ 2�2
c

ð1þ �2
cÞ2

exp

�
�
x

l

�
; (9)

in which �c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s=V

2
i � 1

q
accounts for the k-space cutoff

and is valid for Vi 	 cs; otherwise �c ¼ 0, and � �
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�me=16Mi

p
=�De. Here, l is a length scale characterizing

the presheath; typically it is the ion-neutral collision mean
free path. The corresponding electron-electron collision

length is �e=e
IE � vTe=�

e=e
IE . The location x ¼ 0 corresponds

to the spatial location where instability onset occurs.
Finally, we apply our estimates of the collision fre-

quency to the presheath using a 1D modified mobility-
limited flow model due to Riemann [12]

e�

Te

¼ ln

�
cs
Vi

�
and dx ¼ dVi

�
c2s � V2

i

V2
i �

i=n

�
(10)

to solve for the ion fluid flow profile which determines
�cðxÞ. This model follows from the two fluid equations
assuming Boltzmann electrons and quasineutrality. It has
been verified experimentally to a distance x � 2l [13],
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beyond which the ion fluid speed is so slow that any addi-

tional contribution to �e=e
IE is negligibly small. Two cases of

Eq. (10) are commonly considered: constant mean free

path for ion-neutral collisions �i=n ¼ l, �i=n ¼ Vi=l, or a

constant collision frequency �i=n � cs=l. For these dis-
charge parameters l � 11 cm [13], and � � 4:5. For
each of these, we plot in Fig. 1 the total predicted
electron-electron scattering collision length along with
the individual contributions from stable plasma theory
and the instability enhancement. The theory is not sensitive
to which presheath model is used.

It was shown in Ref. [2] that the limits of validity for the
scattering theory depend on the number of particles in a
Debye cube, n�3

De, and �x=l. For this plasma with n�3
De �

3� 103, the theory is valid for �x=l & 55. In this pre-
sheath example the maximum �x=l & 10, which is
reached at the sheath-presheath boundary; thus, the theory
is well suited to this problem.

Figure 1 shows that near the sheath-presheath boundary
ion-acoustic instabilities enhance the electron-electron
scattering approximately 100 times the nominal stable
plasma rate. The collision length for electron-electron
scattering is shortened by more than a factor of 10 over a
distance of approximately l=2. Thus, near the plasma
boundary, instability-enhanced collective interactions
determine the scattering rate and drive the plasma to-
ward the unique Maxwellian EVDF within the pre-
sheath length scale, which is consistent with Langmuir’s
measurements.

Aspects of the model proposed in this Letter can be
directly tested experimentally. The k-space fluctuations

could be characterized in the presheath. We predict that
modes satisfying k * 1=�De become unstable and grow
exponentially toward the boundary. These fluctuations
should disappear due to ion Landau damping if the ions
are heated to Ti � Te. Alternatively, accounting for ion-

neutral damping results in a �i�i=n=2 term to be added to

Eq. (7). Using �i=n � cs=�
i=n, leads to the result that the

ion-acoustic instabilities are ion-neutral damped for
� & 1. Since �> 1 is required for instability-enhanced
scattering, this also represents a maximum neutral density
above which the presheath length is so short that the
instabilities have an insufficient distance to grow before
reaching the boundary. Experimentally, electron scattering
could thus be attributed to instability-enhanced collective
interactions by measuring both the fluctuations and the
EVDF with and without instabilities.
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FIG. 1 (color online). Total electron-electron collision fre-

quency normalized to �e=e
LB (solid lines) with contributions

from Coulomb interactions in a stable plasma (black, dash-
dotted line) and from instability-enhanced collective interactions
(dashed lines). Two common presheath models are represented:
�i=n ¼ Vi=l (blue) and �i=n ¼ cs=l (aquamarine).
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