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We propose an analytic approach to the problem of collisionless magnetic reconnection formulated as a

process of Alfvén eigenmodes’ generation and dissipation. Alfvén eigenmodes are confined by the current

sheet in the same way that quantum mechanical waves are confined by the tanh2 potential. The dynamical

time scale of reconnection is the system scale divided by the eigenvalue propagation velocity of the n ¼ 1

mode. The prediction of the n ¼ 1 mode shows good agreement with the in situ measurement of the

reconnection-associated Hall fields.
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Magnetic reconnection is recognized as a universal pro-
cess that converts magnetic field energy to the kinetic and
thermal energy of the plasma in space and the laboratory.
The physical mechanism of energy conversion and the time
scale are the fundamental issues of reconnection. Energy
conversion in the Sweet-Parker model [1,2] is done by
means of magnetic field diffusion into the plasma fluid
with the characteristic velocity being the diffusion velocity.
Petschek introduced a mechanism as a complement to
diffusion where the change in magnetic field propagates
as a slow mode shock [3]. The characteristic velocity
within the Petschek model is the shock propagation veloc-
ity, which can be much larger than the Sweet-Parker’s
diffusion velocity. In these models the time scale of re-
connection is estimated as the system scale divided by the
characteristic velocity; the reconnection rate is measured
by the plasma inflow velocity balanced by the character-
istic velocity in a steady state.

However, crucial aspects of reconnection in real plasmas
such as onset and temporal behavior cannot be resolved in
steady theories. The general approach to unsteady recon-
nection has been to Fourier analyze current sheet dynamics

in ð!; ~kÞ space and search for instabilities, e.g., the tearing
mode [4]. Unstable reconnection modes grow significantly
on a time scale measured by the growth rate. In this Letter
we present a novel approach to time-dependent collision-
less reconnection. Collisionless reconnection is described
as the generation and dissipation of Alfvén eigenmodes.
Not only can Alfvén eigenmodes grow, they can also be
damped by transferring wave energy into reconnection ion
jets. We solve linearized two-fluid equations to find the
self-consistent evolution of reconnection following an ini-
tial perturbation in the similar spirit of Landau’s method
[5,6]. The dynamical time scale of reconnection is the
system scale divided by the eigenvalue propagation veloc-
ity of the n ¼ 1mode. Both Fourier analysis of instabilities
and this theory are limited in the linear regime.

The experimental motivation for this Alfvén-eigenmode
approach is the recent in situ measurement of
reconnection-associated Hall fields in collisionless space
plasmas [7–10] (see Fig. 1) and laboratory plasmas

[11,12]. Hall fields and current were first introduced by
Sonnerup [13] as a steady structure in the diffusion region.
Later numerical studies looked at other various perspec-
tives [14,15]. In our approach, Hall fields and current are
incorporated into the Alfvén eigenmode. Predictions of the
n ¼ 1 mode show good agreement with in situ measure-
ments (see Fig. 2). Hall perturbations are smaller than or, at
most, comparable to the background as indicated by mea-
surements [7–12]. This fact implies that a linear theory
may suffice to explain the essential physics of collisionless
reconnection.
The set of collisionless two-fluid equations is

cr� B ¼ 4�ðJi þ JeÞ; (1)

cr� E ¼ �@tB; (2)
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FIG. 1 (color). Schematic diagram of magnetic reconnection
in the current sheet with Hall fields and current included. The
Hall fields, the Hall current and the magnetic-field-aligned
electric field are incorporated into the Alfvén eigenmode.
Predictions of the Alfvén eigenmode are compared with mea-
surements from the Polar satellite in Fig. 2. Analysis suggests a
phase with opposite Hall current and Hall By preceding the phase

in the figure.
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where the subscript s represents the particle species. Ions
and electrons have been assumed isotropic and isothermal.
We also assume a quasineutral plasma, ni � ne. The coor-
dinate system is depicted in Fig. 1, with x along the normal
of the current sheet, z parallel to the background magnetic
field, and y aligned with the background current. @y ¼ 0 is

assumed. Initially the current sheet is set as a Harris sheet
[16] with background plasma density ns ¼ n0sech

2ðx=aÞ,
background magnetic field Bz ¼ Bo tanhð�x=aÞ and the
background current Jyo supported by the ion and electron

diamagnetic drifts with velocity uso ¼ 2cTs=qsBoa. Now
we solve the linearized two-fluid equations. The time
derivatives of the x component of (4), in which @tðnsqsÞ
is eliminated using (3) and @tusy is eliminated using the y

component of (4), are

@tEx¼4�
v2
A

c2

�
Jix��2

i ð@xxJixþ@xzJizÞþ!�2
i @ttJix

þuio
!i

ð@xJixþ@zJizÞ�niqi
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�
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where v2
A ¼ B2

z=4�nimi is the local Alfvén speed, !s ¼
qsBz=msc is the local gyrofrequency of species s, and �s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ts=ms!

2
s

p
is the local gyroradius of species s. In (6) we

have assumed �e@x � 1 and !�1
e @t � 1. At the current

sheet center where electrons are unmagnetized, the above
assumption is ambiguous and the electron pressure anisot-
ropy may become relevant [17,18]. In the z component of
the electron momentum equation, the pressure gradient
dominates the inertia effect in high � plasmas [19,20].
Taking the time derivative of this equation yields

@tEz ¼ �ð@zzJez þ @zxJexÞTe=ðneq2eÞ þ ueo@zEy: (7)

Eliminating�qiniuioBx=c� @zniTi in the z component of
the ion momentum equation yields

mini@tuiz ¼ qiniEzð1þ Ti=TeÞ: (8)

Substitute (1), (5), and (7) into the time derivative of the y
component of (2). Rescaling x=a ! x and Fourier trans-
forming the achieved equation in z and t (@t ��i!, @z �
ikz) gives
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and ~Sðx;!; kzÞ is the Fourier transform of

S¼4�

c

�
2noqic

Bo

@zxEy�noqia@zzxuizþ@zx
@xJex
sech2x

� mia
2

TiþTe

@ttzJex

�
: (10)

In (9) we have neglected !2=ð�2
i sech

2xÞ compared with
(!2=k2zV

2
A � tanh2x=sech2x) assuming that By is of low

frequency (!2=�2
i � 1) and long parallel wavelength

(k2zV
2
A=�

2
i � 1) as indicated by multispacecraft measure-

ments [8,9]. We also neglect terms on order ofOðme=miÞ in
(9). Setting ~By ¼ c sechx we turn (9) into

@xxc þ ½�� 1� ðR2 þ �Þtanh2x�c ¼ ~Ssechx=k2z ;

where � ¼ !2R2

k2zV
2
A

; R ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
io þ �2

ao

q :
(11)

Equation (11) is an inhomogeneous Sturm-Liouville equa-
tion. The weight function is sech2x.
The homogeneous form of (11) is a time-independent

Schrodinger equation with corresponding total energy E ¼
�� 1 and a potential well Vtanh2x, V ¼ R2 þ �. Only
bound state solutions exist since E< V. The allowed en-

ergy levels (see Ref. [21], p. 1653) E ¼ V � ½
ffiffiffiffiffiffiffiffiffiffiffiffi
V þ 1

4

q
�

ðnþ 1Þ�2 yield eigenvalues of �

�n ¼ ðnþ 1Þnþ ð1þ 2nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p
þ 1: (12)

The eigenfunctions are

c nðxÞ ¼
Fð�n; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð�nÞ þ 1

4

q
� n; jbn þ 1j; 1

e2xþ1
Þ

ðex þ e�xÞbn ; (13)

where F is the hypergeometric function, bn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð�nÞ � Eð�nÞ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p
. Eigenfunctions are real and

the first two are c 0ðxÞ ¼ ðe�x þ exÞ�
ffiffiffiffiffiffiffiffiffi
R2þ1

p
and c 1ðxÞ ¼

ðe�x þ exÞ�
ffiffiffiffiffiffiffiffiffi
R2þ1

p
ðe2x � 1Þ=ðe2x þ 1Þ. The eigenmode is

Alfvénic as indicated by its phase velocity � introduced in
(11). The Harris sheet confines the Alfvén eigenmode in
the same way a tanh2ðxÞ potential well confines a quantum
mechanical wave. From the perspective of mode conver-
sion theory [6], the Kinetic Alfvén Wave (KAW) provides
a useful insight to the eigenmode solution. The KAW
dispersion relation is !2=ðk2zv2

AÞ ¼ 1þ k2xð�2
i þ �2

aÞ
[19,20]. We can heuristically achieve a similar
Schrodinger equation with tanh2 potential by replacing kx
with �i@x in the KAW dispersion relation and employing
the x dependence of v2

A, �
2
i and �2

a from the Harris sheet.
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FIG. 2. Comparison between the observation by Polar (left
column) and predictions of the n ¼ 1 Alfvén eigenmode in the
Harris sheet (right column). The figure of measurements is from
Ref. [7]. Unit length in x is 100 km.
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With the eigenmode solutions we proceed to calculate
~By from Eq. (11) as

~B y ¼ sechx
Z 1

�1
Gðxjxo;!; kzÞsechxo

~Sðxo;!; kzÞ
k2z

dxo;

(14)

where the Green’s function G ¼ P
nc

�
nðxoÞc nðxÞ=½ð��

�nÞ�2
n� and �2

n ¼
R1
�1 c nðxÞc �

nðxÞsech2xdx (see

Ref. [21], chapter 7). Let ! ¼ !r þ i�, � ! 0þ, s ¼
!=i. s is the Laplace transform variable. We replace the
Fourier transform in time with a Laplace transform and
treat (14) as an initial value problem. For simplicity the
initial condition is set as Byjt¼0 ¼ 0, @tByjt¼0 ¼ 0. The

Laplace and Fourier inversion of (14) is

By ¼
X
n

c nðxÞsechx
Z 1

�1

Z 1

�1

Z t

0

�VAc
�
nðxoÞsechxo

2�2
n

ffiffiffiffiffiffi
�n

p
R

�Hððt� toÞVA

ffiffiffiffiffiffi
�n

p
R�1

� jz� zojÞSðxo; to; zoÞdtodzodxo; (15)

where H is the unit step function. By is in the form of

superposition of eigenmodes propagating in	z. The phase
velocity of the nth mode is VA

ffiffiffiffiffiffi
�n

p
R�1. The sources uiz, Jex

and Ey determine the term S and thus By. Terms Jix, Jez, Ex

and Ez, grouped with By as parts of the Alfvén eigenmode,

can be calculated from the sources using Eqs. (1), (2), (5),
and (7). The other half of the formulation is the response of
the sources to the Alfvén eigenmode. uiz is calculated from
(8); Jex is calculated from (6); Ey, is calculated from

@xx ~Ey � k2za
2 ~Ey ¼ ð4�a2=c2Þ@t~Jy; (16)

@t~Jy ¼ c2

4�a2
@x

�
sech2x

tanhx
~Ey

�
þ c2sech2x

4��2
io

~Ey þ ~SE; (17)

where (16) and (17) are Fourier transformed in z, �io ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2mi=ð4�q2i noÞ

q
, and ~SE ¼ uioikz~Jez �!e�

2
eikz@x ~Jez �

!i
~Jix þ ð!ic

2=4�v2
AÞ@t ~Ex. Equation (17) is the sum of

the y component of (4) multiplied by qs=ms. In obtaining
(17) we eliminate Jex using (6), set ni ¼ ne and eliminate

@tðneqeÞ using (3). Setting ~Ey ¼ ’
ffiffiffiffiffiffiffiffiffiffiffiffi
tanhx

p
and inserting

(17) into (16) yield

@xx’þ ½�k2za
2 þ VðxÞ�’ ¼ ð4�a2=c2Þ~SE=

ffiffiffiffiffiffiffiffiffiffiffiffi
tanhx

p
;

(18)

where VðxÞ ¼ ½2 coshð2xÞ � 1�csch2ð2xÞ � a2sech2x=�2
io.

VðxÞ is roughly approximated as 1=ð4x2Þ. Two independent
solutions to the homogenous form of (18) are ’1 ¼ffiffiffi
x

p
Hð1Þ

0 ð�ikzaxÞ and ’2 ¼
ffiffiffi
x

p
Hð2Þ

0 ð�ikzaxÞ if kz > 0,

and ’1 ¼
ffiffiffi
x

p
Hð2Þ

0 ð�ikzaxÞ and ’2 ¼
ffiffiffi
x

p
Hð1Þ

0 ð�ikzaxÞ if

kz < 0. Hð1Þ
0 and Hð2Þ

0 are Hankel functions of first and

second kind. We select ’1 and ’2 to ensure a real Ey,

eEyð�kzÞ ¼ eEyðkzÞ. ’1jx!�1 ¼ 0 and ’2jx!1 ¼ 0 satisfy

the left and right boundary conditions, respectively. The
Green’s function of (18) is gðxjxo; kzÞ ¼ �’1ðx<Þ’2ðx>Þ=
�ð’1; ’2Þ (see Ref. [21], chapter 7), where x<ðx>Þ is the
smaller (larger) of x and xo. �ð’1; ’2Þ ¼ 
4i=� is the
Wronskian of ’1 and ’2. Using Green’s function, we
calculate ~Ey as the response to the Alfvén eigenmode

~E y ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tanhx

p Z 1

�1
gðxjxo; kzÞ�ð4�a2=c2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tanhxo
p ~SEdxo: (19)

Once we obtain Ey by Fourier inversion in z, we calculate

Bx, B
0
z and Jy through (1) and (2). Now we complete a

dynamic formulation of collisionless reconnection. The
existence of parallel Ez indicates the breaking of the ‘‘-
frozen-in’’ condition.
The physical meaning of the calculation has two recip-

rocal parts: The sources (Ey, Jex, and uiz) generate Alfvén

eigenmodes propagating outward in 	z; meanwhile the
Alfvén eigenmodes excite the sources and dissipate. The
eigenmodes-sources coupling evolves self-consistently
following an initial perturbation. Before the system reaches
the phase in Fig. 1, we expect an eigenmodes-generation
phase in which magnetic energy is converted to estab-
lish Hall fields and Hall currents. We try to produce this
phase with a test perturbation Ey ¼ jEoj exp½�x2 þ
z2Þ=l2� that is associated with suitable @tB in extracting
magnetic energy and changing magnetic topology globally,
l can be as large as the system scale. We assume that
reconnection ion jets are not established (uiz � 0) in this
phase. We also assume that electrons approximately
E� B drift in x (Jex � neqeEyc=Bz) and avoid any evalu-

ation around x ¼ 0. Calculation shows S (10) is quadru-
pole, signðSÞ ¼ �signðxzÞ. Evaluation of (15) shows
that the n ¼ 1 mode dominates and signðByÞ ¼
�signðSÞ. The contribution from the n ¼ 1 mode is By ¼
Cc 1ðxÞsechx@z exp½�ðz=lÞ2�t2, where signðc 1ðxÞÞ ¼
signðxÞ and C is a negative constant. In this phase the
quadrupole Hall By and Hall current are opposite to those

in Fig. 1. The Hall current Jx � Jix, like the perpendicular
current in a KAW, is mainly a modified ion polarization
current and associated with the increasing of inward Hall
Ex in the region z=l < 1. Electrons move along the mag-
netic field to track drift ions and keep quasineutral, pro-
ducing the consistent parallel Hall current Jz, Jz � Jez. In
the parallel direction force balance is approximately true
for electrons, neqeEz � neqeueoBx=cþ @zneTe. The con-
tribution to JzEz from neqeueoBx=c almost cancels out in
integrating over x. The density gradient in z created by the
drift ions is inward at inner current sheet and outward on
the outer periphery, relating a total JzEz > 0. JxEx > 0 and
JzEz > 0 indicate that the eigenmode stored the converted
magnetic energy in the form of increasing wave energy.
The time scale of this phase is the ion polarization drift
time, equal to the time of establishing the Hall Ex.
According to (8) the ion experiences a total outward force
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qiniEzð1þ Ti=TeÞ in the inner current sheet. The system
probably transits to the eigenmode-dissipation phase when
ion acceleration becomes dominating. The ion jets’ term
can dominate S and produce the Hall quadrupole pattern in
Fig. 1. In this phase JxEx < 0 and JzEz < 0 indicate a
decrease in the wave energy transferred to the accelerated
ion jets and the excitation of secondary Ey. In the region

x=a � 1, the excited ~Ey goes as ~AðkzÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
tanhx

p
’2 �

~AðkzÞ expð�jkzjxÞ according to (19). The outward ion jet
picks up energy qiEzl � qiExa. We notice qiExa�
ð1=2ÞmiV

2
A in observations [7–9].

Equation (15) explicitly indicates several results. In
reconnection, S is an odd function of x and eliminates all
even modes. The amplitude factor 1=ð ffiffiffiffiffiffi

�n

p
RÞ indicates that

Alfvén eigenmodes are created easier in a thinner current
sheet and that the n ¼ 1 mode dominates. The step func-
tionH suggests that the reconnection process can extend in
	z at the velocity VA

ffiffiffiffiffiffi
�1

p
=R in this eigenmodes-sources

coupling formulation. A local change can be communi-
cated with the rest of the system over the dynamical time

scale LRV�1
A ��1=2

1 . L is the system scale. The dynamical

time scale is often related to the time taken for a system to
respond to a change and move to another equilibrium state.

Figure 2 presents the comparison between the n ¼ 1
Alfvén eigenmode and the measurement of Hall fields
from the Polar satellite [7]. We model the measured current
sheet in Ref. [7] as a Harris sheet with parameters no ¼
8 cm�3, Bo ¼ 80 nT and a ¼ 150 km; these numbers are
from the observation. Ti ¼ 5Te is our estimate for a typical
current sheet. Independent determination of the amplitude
and sign of the Hall fields needs past information, which is
unavailable. Therefore, we take the measured amplitude of
By as an input. We compare the x dependence of the Hall

fields with the form of the n ¼ 1 mode in the present
theory. The perturbation assumption (�ns=ns & 1,
By=Bo & 1 and �Bz=Bo � 1) is roughly satisfied in this

case. In a pure n ¼ 1 mode By � c 1ðxÞsechx and Ex �
ðVAR=c

ffiffiffiffiffiffi
�1

p Þsinh2x½1� ðp2
i =a

2Þ@xx þ ðuio=!iÞ@x�By. Ex

is estimated with the absence of sources. By and Ex show

good agreement with observations in the x dependence. A
minor difference may result from the deviation of density
from nosech

2x. In addition, given the measured amplitude
of By, the calculated amplitude of Ex shows good agree-

ment with data. We also suggest searching n ¼ 3 mode
signals in lab experiments [11,12].

In conclusion, this Letter addresses the most fundamen-
tal issues of reconnection, namely, the energy conversion
mechanism and the time scale. We propose a new mecha-
nism of generating and dissipating Alfvén eigenmodes for
time-dependent collisionless reconnection. The dynamical
time scale of reconnection, determined as the system scale
L divided by the eigenvalue propagation velocity
VA

ffiffiffiffiffiffi
�1

p
=R, approaches the Alfvén transit time L=VA as

R ! 1. This can be much faster than Sweet-Parker and
Petschek reconnection models. Notice that the physical
meaning of the key result is different in each mechanism.
Both the diffusion velocity and shock propagation velocity
are local outward velocities in 	x that balance the inflow
velocity at a certain interface; the eigenvalue propagation
velocity in our approach is a velocity in	z at which a local
perturbation communicates globally with the rest of sys-
tem. The growth rate measures the time scale for unstable
reconnection modes to grow significantly; the dynamical
time scale in our approach implies an interval over which a
new equilibrium is achieved.
The physics of plasma heating and energization of high

energy particles in reconnection are not resolved in this
Letter. Isothermal electrons may be an appropriate ap-
proximation since !=kzv

e
th � 1 [6]. Isothermal ions can

be modified to resolve ion heating through Landau damp-
ing. A kinetic treatment or test particle method is needed to
understand the formation of high energy particles.
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