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Nonlinear electron plasma wave packets are shown to locally damp at the rear of the packet. Resonant

particles enter the back of the packet and linearly damp the first few wavelengths, thereby carrying energy

away from the back edge and eventually eroding the packet. This process could significantly affect the

recurrence and long-time behavior of stimulated Raman scattering because it is predicted that a nonlinear

packet will erode away before it travels a speckle length. The effects of a density gradient on the packet’s

propagation are also discussed.

DOI: 10.1103/PhysRevLett.102.245002 PACS numbers: 52.35.Fp, 52.35.Mw, 52.38.Bv, 52.65.�y

The evolution of nonlinear plasma waves is a fundamen-
tal topic in basic plasma physics. This topic has received
renewed attention due to its possible importance to laser-
target coupling in laser-driven inertial confinement fusion
(ICF). In ICF, stimulated Raman scattering (SRS) [1], in
which the incident laser decays into a backscattered light
wave and an electron plasma wave, can reflect the laser and
hence reduce the coupling of laser energy to the target (see
section III of [2], for example). In addition, the resulting
plasma wave can trap electrons and lead to energetic
electrons that can preheat the target. Recent fully kinetic
SRS simulations with parameters relevant to ICF show
SRS to be temporally bursty [3], with spatially localized
plasma wave packets [4] that convect across the interaction
region [5–7].

Nonlinear effects in infinite periodic waves have been
studied in detail in [8–12], and much recent work has
focused on plasma wave nonlinearities that affect SRS
saturation [3–6,13,14]. There has also been recent work
on dynamic long-lived nonlinear periodic trains [15].
Investigations on finite-length plasma wave packets, how-
ever, are not as extensive. Some authors have studied wave
packets, but they focused on the dynamics of particles tra-
versing a fixed amplitude wave packet, either numerically
[16] or with adiabatic theory [17]. Many have also em-
ployed the Born approximation to estimate the linear
damping rate [18,19] or energy distribution of scattered
particles [20]. Others have combined theory and simulation
to study the lengthening of packets due to detrapped par-
ticles [21], but without addressing the packet’s energy loss.
In this Letter, we show for the first time how a finite-length
nonlinear plasma wave packet will erode away due to par-
ticle trapping. This is different from infinite periodic wave
trains, which evolve into long-lived undamped BGK-like
modes after several trapped-particle bounce times [10].

Plasma wave packets generally move at the wave’s
group velocity, vg¼@!=@k¼�Re½ð@�=@kÞ=ð@�=@�Þ�¼
v�þ2

ffiffiffi

2
p

vthRe½Z0ðsÞ=Z00ðsÞ�, as this is the speed at which
energy moves. Here, s ¼ �=

ffiffiffi

2
p

kvth, ZðsÞ is the plasma
dispersion function, � ¼ !þ i�L satisfies �ð�; kÞ ¼ 0,
and v� ¼ !=k is the phase velocity. We will show in the
following that the finite length of the packet combined with
particle trapping effects leads to a faster apparent speed
due to etching of the back of the wave packet.
Assume that, for this discussion, the wave packet enve-

lope is a flat top many wavelengths long with a short rise
and fall a few wavelengths long on either side. By ‘‘short’’
we mean the amplitude varies quickly enough that the
adiabatic invariant J for the trapped particles is not con-
stant. Such packets are often generated in kinetic simula-
tions of SRS [4,5,7]. Figure 1 presents the electron phase-
space from a sample particle-in-cell (PIC) simulation,
described below, for such a packet, with (a) the rear and
(b) the front of the packet at the same time. For the packets
considered here, v� � vg, so particles with v� � vT <
v < v� þ vT stream into the wave packet from behind and

can become trapped, where vT ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eE=mk
p

is the trapping
width. Each wave period, since v� � vg, a new potential

well emerges at the rear edge of the packet. Particles that
enter at the appropriate velocity and phase will trap in this
well. During approximately the first quarter of the bounce
time (�B ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=eEk
p

) after the new well forms, the
wave loses energy at approximately the linear Landau
damping rate [10]. The linear Landau damping rate is
appropriate, despite the large peak amplitude, because
resonant electrons moving at approximately v� are only
in the first few buckets for a fraction of a bounce time.
Figure 1(a) depicts this process in the potential wells
labeled ‘‘1’’ and ‘‘2,’’ which are referred to as ‘‘buckets’’
in the following.
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After �B=4, the resonant particles begin to give their
energy back to the wave as they ride up the far side of the
potential well, as can be seen in bucket ‘‘3’’ in Fig. 1(a).
The buckets, and hence the particles trapped in them, move
at a speed of v� � vg in the packet’s frame, so that by the

time the energy in each bucket begins to flow back to the
wave, it has moved a distance dlin ¼ �Bðv� � vgÞ=4 into

the packet. Each bucket effectively transports energy from
the rearmost wavelength of the packet into the interior. The
damping ceases as the trapped particles traverse the packet
and phase mix [10], so only the rearmost part of the packet
Landau damps. Each new phase front continues this pro-
cess, allowing Landau damping to continually damp, or
etch away, the wave energy at the rear of the packet. This
model implicitly assumes that the packet length l is much
larger than dlin.

We will now estimate the etching rate, vetch. As a wave
Landau damps, it loses energy according to dW=dt ¼
�2�LW, where W is the energy in a wavelength,
1
8��E

2 Re½ @
@� ð��Þ�, and Re½ @

@� ð��Þ� � 2 describes the

field and kinetic energy in a plasma wave. Each new bucket
will Landau damp over a time �B=4, and will therefore lose

an amount �Wlost ¼ 1
8� �E

2
0ð1� e�2�L�B=4ÞRe½ @

@� ð��Þ�,
where E0 is the peak amplitude. In the wave frame, a
new bucket forms in a time � ¼ �=ðv� � vgÞ, so the rate

of energy loss at the rear edge is dW=dt ¼ �Wlost=�. The
etching rate can be calculated by finding the time �t
required to remove all the energy in a region �x,
1
8�E

2
0 Re½ @

@� ð��Þ��x ¼ ðdW=dtÞ�t, giving
vetch ¼ �x=�t ¼ ðv� � vgÞð1� e��L�B=2Þ: (1)

In the limit that �L�B � 1, vetch ¼ �L�Bðv� � vgÞ=2. For
long wavelength waves, k�D ! 0, no particles trap and the
wave packet propagates essentially unchanged. As k�D

increases, vetch becomes nonzero at k�D � 0:2 and the
back of the wave erodes away more quickly. The etching
rate increases sharply at low amplitude, since �B / 1=

ffiffiffiffiffiffi

E0

p
,

until the model breaks down when vetch approaches v�.

To verify the simple model above, we performed numer-
ous 1D electrostatic PIC simulations using the BEPS code
over a range of wavelengths, from k�D ¼ 0:2 to 0.4, each
separated by 0.025. The simulations use 4096 cells and
8192 simulation particles per cell with a grid spacing of
�x ¼ �D and a time step of�t ¼ 0:2!�1

p . Traveling waves

with two different envelopes were excited using external
drivers. The first has a flat-top envelope many wavelengths
long and a short 1–2� rise and fall, the second a symmetric
envelope with the rise given by 10ðx=LÞ3 � 15ðx=LÞ4 þ
6ðx=LÞ5. In both cases, the driver is on for about two
wave periods, and the spatial variations are such that the
adiabatic conditions, v��B � 2� for the flat top and

v��B � L for the Gaussian-like pulse, are not satisfied.

For each wave number, we varied the driver amplitude
ED by a factor of 100. For example, the waves driven at
k�D ¼ 0:3, shown in Fig. 2(c), have eED=m!pvth ¼
0:002–0:2, resulting in peak packet amplitudes between
eE=m!pvth � 0:0087–0:65. In order for the etching

model to be valid, the wave amplitude must be sufficiently
large that �L�B < 1. Otherwise, v� > vetch, or equiva-

lently, the wave will damp in less than a bounce time.
For each simulation, we chose an ! such that �ð�; kÞ ¼
0. For k�D > 0:4, the simple model appears to break down.
For the simulation in Fig. 1, k�D ¼ 0:3 and a flat-top
spatial envelope 30� long was used.
A comparison of the simulation results with the model

shows excellent agreement with both the k and amplitude
dependence. Figure 2(a) shows the etching rate as a func-
tion of k�D for simulations with amplitudes of
eE=m!pvth ¼ 0:09–0:16. Figure 2(c) shows good agree-
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FIG. 2. (a) v vs k�D with the rear-edge etching velocity
measured from the simulations and calculated from the model
for amplitudes near eE=m!pvth ¼ 0:1, including the run using

fFl. The calculations are made including the appropriate particle
shape factor for the simulations. (b) Maxwellian and artificially
flattened distribution function, with n1 ¼ 0:004n0, vth1 ¼
0:47vth0, vd ¼ 3:77vth0. (c) v vs amplitude for k�D ¼ 0:3.
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FIG. 1 (color online). Phase space for a packet with k�D ¼
0:3, peak amplitude of eE=m!pvth � 0:55, and length 30�

moving to the right at t!p ¼ 135. Plot (a) is the left side of

the packet, plot (b) is the right. In (a), the newly trapped particles
enter the rear of the packet. The sideband beat pattern begins to
break up the phase-space vortices about 6 wavelengths into the
packet. In b), detrapped particles stream forward ahead of the
packet. The sidebands have not yet reached the front of the
packet. The solid dark blue background represents no particles.
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ment between Eq. (1) and the simulations over a large
range of amplitudes for k�D ¼ 0:3. This choice of k allows
etching velocity measurements over a wide range of am-
plitudes. The electric field for the smallest amplitude
waves is actually below the noise in the simulations. For
these cases, we use the subtraction technique [22], in which
the fields from a run without the driver are subtracted from
the same run with the driver so that the packet is clearly
obtained. A comparison of the packet lifetime also gives
reasonably good agreement with the simulations, as shown
in Fig. 3(a). The model predicts that the wave will erode
away completely by �etch ¼ l=vetch � 700!�1

p , which is in

good agreement with the simulation. Figure 3(b) shows the
same run with a periodic driver for comparison. In this
simulation, the sideband instability breaks up the wave, but
about 50% of the initial wave energy remains in the field at
the end of the periodic simulation.

Wave packets also suffer sideband instabilities [6,12]
that destroy the trapped-particle phase-space vortices
traversing the packet but that do not affect the etching
rate. Visible in Figs. 3(a) and 3(b) as striations propagating
at approximately the group velocity, the sideband modu-
lations allow trapped particles to stream from one bucket
to the next. These result from the beating of the fundamen-
tal with the sideband modes. Figure 1(a) also shows this
effect. In the wave packet case, the sequence of particle
trapping usually considered in the temporal or initial value

(infinitely long) case is a sequence in space. Initially, we
see in Fig. 1(a) that the wave Landau damps as the particles
accelerate in buckets 1 and 2. Buckets 3 through 5 show the
particles sloshing in their buckets as they phase mix (buck-
ets 6 and after). Sidebands do not appear until bucket 6 or
7, where the distortion they cause to the potential wells of
the wave allows some particles to stream into adjacent
buckets. Thus, the etching process is not affected by side-
band instabilities, since sideband growth requires the
newly trapped particles to have bounced a few times. By
this time, the bucket is several wavelengths into the packet,
leaving the rear edge devoid of sidebands. At the time of
the plot, the sidebands have not moved far enough into
the packet to be visible at the right side of the packet
[Fig. 1(b)]. Eventually, the sidebands lead to a complex
interplay of trapped and detrapped particles in the central
section of the packet, but the wave will still etch away in a
time �p.

Ultimately, the trapped particles exit the packet at its
front boundary, having traversed it at a speed near v�.

These detrapped particles drive plasma waves in front of
the packet at lower k, an effect that can be seen in Fig. 1(b)
and in Fig. 3(a) to the right of the line labeled ‘‘vg’’ [21].

We have reproduced some of the simulation results in [21],
where short packets with l � v��B were studied. The

trapped particles from short packets drive very well defined
waves in front of the packet since they have not phase
mixed and therefore exit the wave as a relatively coherent
bunch. For the wave packets considered here, and for those
observed in SRS simulations [3–7], phase mixing and
sidebands disrupting the phase space cause a constant
stream of particles to exit the packet. Consequently, the
forward waves are not very well defined in our simulations,
though we have observed them in nearly all the simulations
we performed.
The appearance of linear Landau damping in Eq. (1)

implies that the etching rate could be reduced by initializ-
ing the plasma with a flattened distribution function.
Figure 2(b) shows a typical Maxwellian distribution (fM)
and an artificially flattened one fFl ¼ fM þ n1

ffiffiffiffiffi

2�
p

vth1
�

e�ðv�vdÞ2=v2
th1 . For a test case with k�D ¼ 0:3, we find that

for fFl, both the front and back of the packet move at nearly
the same speed, in contrast to the strong etching case
shown in Fig. 3(a). However, the linear group velocity
with the flattening is about 60% higher than it would be
without it, despite the second population accounting for
only 0.4% of the total density. The front-edge velocity is
actually slightly slower than the predicted group velocity in
this case, so we use it instead for the data point in Fig. 2(a).
It is also of interest to consider the effects of a density

gradient. For example, both SRS and the two plasmon
decay instability [23] will excite plasma wave packets in
a density gradient. Packets propagating in a gradient be-
have in much the same way as their homogeneous counter-
parts, except that k, v�, and vg change with position. A

change in the packet’s behavior occurs, whether going up
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FIG. 3 (color online). Spatial and temporal average of the
normalized electric field energy in units of ðe=m!pvthÞ2. Plots
(a) and (b) are from a uniform plasma simulation with a driver
having k�D ¼ 0:325 and amplitude eED=m!pvth ¼ 0:01 lasting

for t!p ¼ 50: (a) has a finite-length driver (30�) with a flat top,

while (b) has an infinitely long driver. At t!p ¼ 800, the wave in

(a) has little energy left, while the infinite wave in (b) still has
nearly 50% of its initial energy. Plots (c)–(e) show results for a
Gaussian driver (FWHM ¼ 4�0, eED=m!pvth ¼ 0:06, duration

t!p ¼ 15). In (c), a wave with ki�D ¼ 0:2 accelerates down a

density gradient of � ¼ �1:95� 10�4=�D, while in (d) and
(e), the wave has k�D ¼ 0:2 and 0.26, respectively, and the den-
sity is constant. At t!p � 700, the wave in (c) has k�D � 0:26.
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or down a gradient, when vetchðkÞ first becomes significant,
which we define as occurring at k?�D � 0:2. A packet
moving through the gradient will reach a point where k >
k? and etch away regardless of its initial k ¼ ki and direc-
tion. If ki < k? and the packet is moving down the gradient,
it will eventually reach a location for which k > k? and
then etch away, with the process accelerating as the packet
moves down the gradient. If it is initially moving up the
gradient and ki < k?, the packet will eventually reflect and
begin to etch away as it moves down when k > k?. If ki >
k?, the packet may completely erode away before k < k?,
or it may only partially etch before reflecting and continu-
ing to etch away as it moves down the gradient.

Figure 3(c) shows a short packet propagating down a
relatively steep density gradient. A slight curving is appar-
ent due to the increase of vg as the packet accelerates down

the gradient. Initialized with k�D ¼ 0:2, this packet is just
about to begin to erode. By t ¼ 700!�1

p , the packet’s wave

number has increased to k�D � 0:26, leading to an in-
crease in vetch. We compare this behavior with the cases
shown in Fig. 3(d) and 3(e). For these two cases, no
gradient was used, but the waves were initialized with
ki�D ¼ 0:2 (d) and ki�D ¼ 0:26 (e) in order to correspond
with the wave’s k in the density gradient case at t ¼ 0 and
t ¼ 700!�1

p , respectively. With k�D ¼ 0:2, little etching

occurs, allowing the packet to propagate for a relatively
long time, while for k�D ¼ 0:26, the packet rapidly etches
away.

In SRS, as the instability saturates, plasma wave packets
propagate forward and etch away, though the continuous
presence of the driving laser and scattered light compli-
cates the dynamics. However, etching still occurs as can be
seen in, for example, Fig. 5 of Ref. [5]. To see that etching
might be important for SRS at NIF-like conditions, con-
sider an f=4:5 to f=8 beam that will give a speckle length
of 4500 to 15 000�D for 3!0 light. A typical packet 100�
long with k�D ¼ 0:3 will take about 6000 to 19 000!�1

p to

cross a speckle, while �p � 2000!�1
p . SRS driven plasma

waves tend to be of relatively large amplitude ([7], for
example), where the etching rate’s amplitude dependence
is weak, so we simply use eE=m!pvth ¼ 0:15 for the cal-

culation. Barring other effects, the packet will completely
etch away long before it can cross the speckle. In NIF-like
experiments, the interaction between multiple speckles
could flatten the distribution function in some regions
and cause the Landau damping and etching rates to vary.
Accordingly, some packets may not etch at all, depending
on the details of SRS in their surroundings, but mesoscale
models of SRS should account for the possibility of
etching.

We have demonstrated that in one dimension, finite-
length nonlinear plasma wave packets with k�D * 0:2
etch away at a rate given in Eq. (1). We estimate that this
effect could destroy an SRS wave packet before it can
traverse a speckle, though non-Maxwellian distributions

due to multispeckle interactions could reduce or eliminate
etching. Sidebands occur in wave packets with trapped
particles, just as they do in infinite periodic plasma waves,
but they do not quench the etching. The effects of a density
gradient were also discussed.
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