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Dynamical relaxation of a pure electron plasma in a Malmberg-Penning trap is studied, comparing

experiments, numerical simulations and statistical theories of weakly dissipative two-dimensional (2D)

turbulence. Simulations confirm that the dynamics are approximated well by a 2D hydrodynamic model.

Statistical analysis favors a theoretical picture of relaxation to a near-maximum entropy state with

constrained energy, circulation, and angular momentum. This provides evidence that 2D electron fluid

relaxation in a turbulent regime is governed by principles of maximum entropy.
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Electron traps [1–3] allow for the experimental study of
two-dimensional (2D) turbulence, when the leading order
description of the plasma is that of a guiding center fluid.
Then, the governing dynamical equations correspond to 2D
hydrodynamics, up to constants of proportionality [1,4,5].
This is perhaps the simplest case of self-organizing turbu-
lence, and is therefore a paradigm for Taylor relaxation [6],
selective decay [7] and other fluid and plasma relaxation
processes [8], with diverse implications ranging from
superfluids [8], to astrophysics [9] and planetary atmos-
pheres [10]. Two-dimensional relaxation has a well dem-
onstrated sensitivity to the initial data [11] and electron
trap dynamics are no exception. Special preparation can
lead to quasistable states characterized by isolated vortices
(or ‘‘crystals’’) [12–14], off axis states [15], or wavelike
behavior [3]. However, here we are concerned with a broad
class of meta-equilibria attained in cases in which non-
linear effects and turbulence are strong, and the system is
initially not too close to one of the above mentioned special
cases. We study the dynamics of these turbulent states (see
also [16,17]) in a Malmberg-Penning electron trap (MPT)
experimentally, analytically, and numerically. We seek
evidence that the intermediate time relaxation to a long
lived quasiequilibrium proceeds towards a state well de-
scribed by a statistical mechanics principle of maximum
entropy (for the periodic case, see [18–20]). The evidence
supports the importance of including as a constraint the
angular momentum, as well as the energy and total
circulation.

Experimental data are from the University of Delaware
electron trap [3]. Electrons are injected into a cylindrical
(r, �, z) vacuum chamber by a heated filament at one end of
the device. Confinement in radius is enforced by a mag-
netic field B0 ¼ Bẑ, and at the ends by electrodes with an
applied voltage Vc. This maintains an approximately 2D
state with the axial z coordinate ignorable. Following
evolution of the electron distribution, measurements are
made by electrostatically dumping the electrons onto the
phosphor screen. The emitted light is proportional to the
charge density, and is read by a CCD camera [3]. This

differs from some experimental setups in which each cycle
provides one or a few pixels of the distribution, and a single
global picture requires many cycles (e.g., [1,2]). Here, for
time sequences, additional cycles employ identical initial
conditions and the (destructive) imaging diagnostic is
enacted at successively later times.
The focus here is on, first, establishing that the dynamics

of the electron distribution in the experiment is reasonably
well described by 2D Navier-Stokes (NS) dynamics, with
free-slip boundary conditions. To a reasonable degree of
approximation, the electron density nðr; �; tÞ follows 2D,
z-averaged, E�B drift motion [1], where

v D ¼ � cr�� ẑ

B
; r2� ¼ �4�qn; (1)

where� is the electrostatic potential, q is the charge of the
electron, and E ¼ �r�. For this system, vD is equivalent
to the 2D fluid velocity v, with the vorticity! proportional
to electron number density n, and stream function c
proportional to�� the potential. (Note the sign difference
[1].) Because of this analogy, the evolution of the system
will be assumed to be governed by the 2D NS equation for
one-sign vorticity,

@!

@t
þ ðv � rÞ! ¼ �r2!; (2)

where v ¼ rc � ẑ and r2c ¼ �!. The term involving
viscosity � is familiar in hydrodynamics but not well
motivated in the guiding center plasma case, as the dis-
sipation mechanisms may differ significantly in NS and
MPT analyses [21]. Establishing this correspondence is a
first step towards understanding the dynamical framework
in which the observed relaxation processes might be under-
stood. When � ¼ 0 the system reduces to the ideal 2D
Euler equations. In all cases we must impose c ¼ const on
the impenetrable device boundary at r ¼ R. This implies,
in the electrodynamic analogy, that the (metal) boundary is
an equipotential surface. If we impose no further condition,
we have, for NS, a boundary that is free-slip, with uncon-
strained tangential velocity at the wall, and, for MPT, a
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surface charge distribution that is proportional to the nor-
mal component of electric field.

For an ideal system with free-slip boundary conditions
the averaged energy E ¼ 1

2 h!c i, circulation C ¼ h!i, and
angular momentum L ¼ h!r2i are conserved through the
evolution (h. . .i ¼ 1

�R2

R
R
0

R
2�
0 . . . rdrd�). In the dissipative

case, C, E, and L are slowly varying relative to entropy
S ¼ �h! ln!i and enstrophy� ¼ 1

2 h!2i. All of the above
quantities decay with time except S, which grows. Over
longer time scales, E and C decrease, and eventually the
system evolves towards a rigid rotator thermal equilibrium
[1,22]. Here we are interested in relaxation at intermediate
hydrodynamical time scales that is governed by approxi-
mate conservation laws.

If the electron experiment behaves like periodic 2D
hydrodynamics [4,5,23,24], one would expect that C, E,
and L will be approximately constant for time scales of
interest, while S increases and � decreases. Indeed we
typically see this ordering of time variations in the experi-
mental electron data sets. An example is shown in Fig. 1,
for the experiment labeled BZ (see Table I).

The central issue is to describe the physics that guides
this relaxation in a turbulent system, and the question is
whether the system goes toward a maximum entropy or a
minimum enstrophy state. If the evolution minimizes the
enstrophy [7], subject to the constraint that C, E, and L are
constants [25], then the final state satisfies the differential
equation

! ¼ �þ �c þ �r2; (3)

where �, �, and � are parameters determined by the con-
strained values of C, E, and L, employing the method of
Lagrange multipliers. Axisymmetric solutions are given by
linear combinations of Bessel functions, and typically
these have negative values of ! near the boundary. A
method for adjusting these solutions to maintain single-

signed vorticity [2] has been criticized [16]. In fact, since
the enstrophy is not proportional to the NS dissipation with
free-slip (or stress free) boundaries—the rigidly rotating
state has � � 0 but zero dissipation—one might even
question the dynamical basis for postulating a minimum
enstrophy theory.
Another possibility for describing the observed relaxa-

tion is based on a statistical argument [2,16]. Here, the
system evolves towards a state of constrained maximum
entropy [4,5,18,20]. This state satisfies the nonlinear dif-
ferential equation for the parameters �, 	, and 
:

! ¼ e�þ	cþ
r2 ; (4)

where again ! ¼ �r2c . General analytical solutions of
Eq. (4), for single-signed vorticity in a bounded circular
domain, have yet to be found. However the axisymmetric
case, not restricting L (setting 
 ¼ 0) in Eq. (4), is a
special solution to the Liouville equation [26], namely:

!ðrÞ ¼ !0

ð1þ �2r2Þ2 : (5)

Here !0 and � are coefficients determined by C and E.
This solution may approximate the most probable state if
angular momentum is not constrained.
To inquire whether 2D NS dynamics, with a single-sign

vorticity, can describe the evolution of the electron trap
data, we carried out direct numerical simulation of incom-
pressible 2D NS flow. The algorithm uses second order
spatial finite difference in a polar domain, and second order
Runge-Kutta in time (see Ref. [27]). We employ a stream
function-vorticity representation, and free-slip boundary
conditions (c ¼ 0 at r ¼ R) with a specified uniform
dimensionless viscosity (� ’ 5� 10�4), with Nr � N� ¼
5122 mesh points. This is a nonstandard procedure in
hydrodynamics [28], as usually � � 0 would imply no-
slip or stress free boundaries. However, no-slip conditions
cannot be used here because they would immediately lead
to production of positive and negative vorticity; the experi-
ment, of course, contains only negative charges (electrons)
in the interior, with opposite-signed neutralizing charges
within the conducting walls (images charges). The chosen
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FIG. 1 (color). Relative variation AðtÞ�Að0Þ
Að0Þ vs time, for global

quantities A: E (violet), C and L (black), S (red) and � (blue).
Symbols with error bars are experiment BZ (see Table I); solid
lines are simulation data. C, E, and L are conserved within 5%,
but variations in S and � are much larger.

TABLE I. Energy E, angular momentum L, initial and final
enstrophy � and entropy S, and normalized fit errors �2

� & �2
S,

for several experimental runs. Except for lowest E=L cases (e.g.,
Run D, a smooth hollowed vortex case, as in [2]), evolution tends
more towards maximum S than minimum �. These higher E=L
and �=E cases are more turbulent.

expt. E L � �S �2
� �2

S

label Init Init Init Fin Init Fin Fin Fin

BZ 0.30 0.08 5.28 3.34 1.98 1.61 0.63 0.29

CC 0.27 0.10 3.31 2.50 1.67 1.38 0.15 0.04

CE 0.24 0.13 2.93 2.30 1.47 1.12 0.91 0.37

CP 0.23 0.15 3.58 2.33 1.47 0.99 1.07 0.44

D 0.22 0.14 1.72 1.54 1.12 1.02 0.08 0.07

PRL 102, 244501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
19 JUNE 2009

244501-2



viscosity is as small as possible without losing adequate
spatial resolution, and corresponds to a large scale
Reynolds number Re� 2000. The effective experimental
Reynolds number may be higher (e.g., [17]) but is difficult
to quantify due to limited spatial resolution as well as the
complexity of kinetic effects.

The digitized charge distribution from the CCD camera
is normalized to the initial average charge density, yielding
a dimensionless vorticity field with C ¼ 1 at t ¼ 0. (These
units are employed throughout the Letter.) The 2D NS code
uses these data as initial conditions. This procedure was
carried out for a variety of electron trap results (see e.g.,
Table I), and the time evolution of the experiment was
compared with the simulation using the above normaliza-
tion and correspondence of charge and vorticity. Most of
the results shown here are from run BZ, which is typical of
all experimental runs except those with very low levels of
turbulence. As seen in Fig. 1, the behavior of global
quantities in the simulation is very close to the experiment.
In the simulations, the computed variation of the ideal
invariants C, E, and L is <1:5%. Figure 2 compares the
experimental charge density pattern and the vorticity in the
simulation at several times. The spatial distribution of
charge density progresses through mergers towards a sim-
pler, nearly-axisymmetric state; the vorticity mergers fol-
low this pattern as well. This correspondence (see Fig. 1)
lends further empirical evidence that the two systems, NS
and MPT, have very similar dynamical relaxation proper-
ties, and that Eq. (2) is a relevant dynamical description.

Having established this connection, we seek to further
explain the relaxation process seen in Fig. 2.
Previously it was demonstrated [18] that the relaxed

states of the periodic (two-signed vorticity) NS equation
are given by a functional relationship between ! and c
that corresponds to a maximum entropy principle. Here
(see Fig. 2) scatter plots of ! vs c also show a character-
istic evolution from a spread distribution towards a single-
valued distribution. This suggests an approach to a non-
linear, steady or force-free condition (neglecting dissipa-
tion) signified by the single-valued relationship
! ¼ !ðc Þ. The collapse to a near single-valued !ðc Þ is
reflected in the sequence of vorticity or charge images in
Fig. 2. At early times the quasi-isolated vortices are con-
nected by filaments leading to a broad spread of the! vs c
distribution. As time progresses, the sequence of vortex
mergers and filament interactions causes a narrowing of the
! vs c distribution. The single-valued distribution is
associated with emergence of a single, strong, nearly axi-
symmetric vortex. The NS simulations also collapse to a
near single-valued !ðc Þ (not shown). Note that the final
form of !ðc Þ appears to be more an exponential type,
rather than linear, apparently favoring the Max-S predic-
tion (cf. [16]).
To understand this relaxation process in greater detail,

and to quantitatively distinguish between Max-S and
Min-� formulations, we proceed to further analysis. A
direct approach would be to solve exactly the Min-� and
Max-S problems, and then compare the solutions to the
experimental final state [Fig. 2(i)]. Solutions of Eq. (3) are
given by linear combinations of Bessel functions, once C,
E, and L are specified. This complete solution [25] does
not preserve single-signed charge (vorticity), leading to a
proposed solution [2] and its criticisms [16] alluded to
above—a fully correct solution would enforce one-signed
charge at the onset. On the other hand, Eq. (4) has also not
been solved analytically. Even numerically this equation is
difficult due to the presence of bifurcations [29]. One
special case avoids these problems, namely the axisym-
metric solution, Eq. (5).
Since neither theory is amenable to an analytical treat-

ment, we compute least squares fits of the experimental
data to the functional forms of the theoretical models.
Goodness of fit is assessed graphically and in terms of
two- and three-parameter statistics, where parameters are
associated with C, E, and if included, L. To evaluate the
Max-S and the Min-� formulations we optimize the fit
parameters in Eqs. (3) and (4) constraining C, E, and L to
agree with experiment [30]. Thus, starting from the experi-
ment itself, we can directly estimate �, 	 and 
 in Eq. (4),
and �, � and � for Eq. (3).
Figure 3 presents best Max-S and Min-� theoretical fits

for experimental data set BZ, as well as the experimental
profile !ðrÞ. Similar analyses were performed on other
experimental data, e.g., those in Table I, with similar
conclusions. Only constrained fits are shown, but both
constrained and unconstrained fits gave comparable re-

FIG. 2 (color). State of experimental run BZ at three times,
t ¼ 0, 15, and 90 (s). Left column: charge density from
experiment; Middle column: vorticity from hydrodynamic simu-
lation at the same (inferred) times as the left column; Right
column: scatter plots of ! vs c , with linear (blue) and expo-
nential (red) fits; see text.
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sults. See Table I for the normalized squared error of these
fits. Figure 3 also shows two exact theoretical predictions
for the BZ globals—the exact Min-� and Liouville solu-
tions. Both the constrained Max-S fit and the Liouville
solution Eq. (5) account well for the experiment.

For every experiment we have analyzed in which the
level of turbulence is substantial, the Min-� fit is visibly
less good than the Max-S fit. In addition the Min-� case
experiences a physically unallowed change in charge sign,
a problem still not satisfactorily resolved. As in the hydro-
dynamic case [18–20], it has been established that the
present data also appear to support the near-maximum
entropy principle. In addition to Run D (see Table) we
found other cases (not shown) in which a minimum �
interpretation works reasonably well (cf. [2]); these are
cases at lower E=L, which are smoother, have lower�, and
therefore weaker nonlinear interactions.

The present analysis suggests that for the turbulent
systems considered here, relaxation is better described by
a maximum entropy principle than by a minimum ens-
trophy principle. The maximum entropy perspective re-
quires that no ad hoc allowances need to be made for the
appearance of negative electron densities. The disparity
between the two predictions grows as does the intensity
of turbulence involved in the relaxation process. This
suggests a larger influence of statistical mechanical con-
siderations when the system is free to explore its phase
space to a greater extent, as it is in the presence of turbu-
lence. The same idea may explain the differences in our
conclusions and those in Ref. [2]; in this regard we plan an
analysis of a much larger sample of initial data. We intend
to treat this question further in a more comprehensive
publication, in which we will also attempt an examination

of special metastable states including off axis [15] and
isolated vortex [12,14] cases.
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FIG. 3 (color). !ðrÞ in experiment BZ (circles) & several
theories. Min-� fit (thick orange dash), Min-� solution (thick
gray dash), Max-S Liouville (solid red), Max-S fit (thin blue
dash).
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