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Pinned Scroll Rings in an Excitable System
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Three-dimensional spiral waves in the Belousov-Zhabotinsky reaction are pinned to unexcitable
heterogeneities. This pinning can prevent the collapse of scroll rings even if the heterogeneity does not
extend along the entire wave filament. In the latter case, frequency differences create stationary gradients
in the rotation phase. These twist patterns and their frequencies agree with algebraic solutions of the
forced Burgers equation revealing insights into the phase coupling of scroll waves.
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Coupled, nonlinear oscillators show intriguing complex-
ities and are relevant to numerous technological and bio-
medical problems. Examples include Josephson junctions,
electrochemical reactions, associative memory models [1],
and scroll waves in excitable media. The latter structures
are three-dimensional continua of spirals that rotate around
one-dimensional space curves (called “filaments’) with a
characteristic local frequency and phase. As for many other
coupled oscillators, these quantities change in time accord-
ing to the oscillators’ connectivity and coupling. In the
case of filaments, the entire system also evolves due to
curvature- and phase-controlled self-motion. In addition to
this intriguing feature, scroll waves are important solutions
of many reaction-diffusion models and have been observed
in systems as diverse as the Belousov-Zhabotinsky (BZ)
reaction, cellular slime molds, and cardiac tissue [2].

Filament motion has been carefully analyzed by several
authors [3], and progress is also being made towards under-
standing turbulent states that arise from negative filament
tension [4]. However, the specific nature of the underlying
oscillator coupling and the resulting phase dynamics are
not well studied. Theoretical analyses suggest a description
in terms of Burgers’ equation [5]. This nonlinear diffusion
equation has been applied to a variety of problems in
interface growth, acoustics, traffic flow, and cosmology,
but a clear experimental demonstration of its applicability
to excitable systems has remained elusive [6,7]. The
sparseness of experimental data is partly due to the fact
that phase gradients along the filament, called ““twist,” are
unstable in homogeneous systems [8].

A promising alternative is to generate stationary twist
patterns by pinning scroll waves to heterogeneities [9].
Such a situation also has biomedical relevance since car-
diac experiments have shown pathological rotors of elec-
tric activity anchored to inactive regions, such as arteries or
connective tissue [10]. For two-dimensional excitable sys-
tems, intentional vortex pinning has been accomplished
using laser beams, patterned catalyst membranes, and
lithographically structured reactors [11]. However, in
three-dimensional media, most of these techniques cannot
be applied. In this Letter, we describe the first, well-
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controlled experiments that demonstrate scroll wave pin-
ning. The stationary twist profiles of the pinned vortices are
found to agree with solutions of Burgers’ equation and
allow the measurement of the system’s linear and nonlinear
diffusion constants.

Our experiments use the ferroin-catalyzed BZ reaction.
The lower 4.0 mm of the disk-shaped medium (diameter
9 cm) are contained in an agrose gel (0.8% weight/vol-
ume), while the upper 4.0 mm are liquid solution. The
initial reactant concentrations are constant throughout
these two layers and equal: [H,SO,] = 0.16 mol/L,
[NaBrO;] = 0.04 mol/L, [malonic acid] = 0.04 mol/L,
and [Fe(phen);SO,] = 0.5 mmol/L. Scroll waves are cre-
ated in two steps. First, an expanding spherical wave is
initiated by contacting a silver wire to the gel-liquid inter-
face for ca. 15 s. Then, the system is swirled rapidly
causing mixing of the solution, which erases the wave in
the upper phase. Once fluid motion ceases, the rim of the
unaffected, gel-bound wave begins to curl spontaneously
into the liquid phase, thus, nucleating the desired scroll
wave. The filament is a near circular loop parallel and in
close vicinity to the gel-solution interface. The wave pat-
terns appear as blueish bands on a red background due to a
color difference between the oxidized and reduced form of
the catalyst. They are monitored with a video camera
mounted above the system.

Because of their loop-shaped filament, the latter wave
patterns are called scroll rings [see Fig. 1(a)]. As expected
from earlier studies, the filament shrinks at a rate propor-
tional to its curvature causing the annihilation of the vortex
structure [12]. These striking dynamics constitute an un-
ambiguous test case for the pinning of the vortex as the
fully pinned scroll ring should not collapse. We attempt
vortex pinning by (1) placing a chemically inert O ring
onto the solution covered gel surface and (2) initiating the
nonrotating wave at its center. The ring is made of the
fluoropolymer viton (ORI Co.). It is well described by a
torus generated from a disk of radius r revolving around a
circle of radius R = 3.1 mm.

Figures 1(b) and 1(c) are representative space-time plots
of a free and a pinned scroll ring, respectively. Filament
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FIG. 1 (color online). (a) Sketch of a scroll ring rotating
around a thin, ring-shaped obstacle. (b), (c) Space-time plots
of a free, collapsing, and a pinned scroll ring, respectively. The
horizontal axes span 15 mm. Time evolves in downward direc-
tion covering 70 min in (b) and 130 min in (c). (d), (e) Top view
of a scroll ring pinned to a full O ring and a cut O ring (¢ =
60°), respectively. Field of view: 14 X 10 mm?.

detection from such plots was first used by Pertsov et al.
[13]. They are stacks of absorption profiles in which time
evolves in downward direction. The profiles are measured
along lines through the center of the scroll ring and cut the
filament twice. In Figs. 1(b) and 1(c), these crossing points
appear as regions that generate left and rightward propa-
gating waves in an alternating fashion. The distance be-
tween the points equals the diameter (2R(7)) of the filament
loop. In Fig. 1(b), this diameter decreases in time and the
filament disappears after approximately 60 min. Our mea-
surements confirm that this decay obeys the expected
dependence R(t)> = R(0)> — 2at [12] with a filament ten-
sion of @ = 7.3 X 107> cm?/s. The thin but widening,
dark lines in both space-time plots are due to small CO,
bubbles and should not be mistaken with the O ring. More
importantly, in Fig. 1(c), this contraction of the filament
loop is absent, which strongly suggests that the scroll ring
has been pinned successfully to the obstacle. Systematic
variations of the obstacle thickness r between 2.6 and
3.6 mm reveal that the wave frequency decreases with
increasing r (data not shown). This finding is consistent
with circumference-controlled rotation periods known
from two-dimensional systems [14] and, thus, provides
additional evidence for the successful pinning of the scroll
waves.

Figure 1(d) shows a top-view snapshot of a pinned scroll
ring [15]. This typical example illustrates that the phase of
the wave pattern has essentially no azimuthal dependence.
Consequently, spiral rotation around the obstacle is syn-
chronized, and the wave pattern is untwisted. In a small
number of experiments, the initial pattern was mildly
desynchronized or even had small segments of its filament

detached; however, even those structures quickly ap-
proached the fully pinned and synchronized state.

The latter observations suggest that scroll wave pinning
is a robust phenomenon. Perhaps even more surprisingly,
we find that scroll rings can also be anchored to ob-
stacles that do not allow for complete pinning. Notice
that filaments can only end at boundaries and then must
do so in pairs with complementary rotation direction [9].
Figure 1(e) shows a snapshot of an experiment with an O
ring from which a large segment was cut out. In this case,
most of the scroll wave rotates around the obstacle, but a
smaller segment evolves freely within the gap. Systematic
variations of the cut angle ¢ reveal that scroll collapse is
prevented for ¢ = 180°. Obstacles with larger cut angles
are nonetheless effective in pinning the scroll ring locally;
however, they fail to avert the collapse of the free filament
towards the obstacle and cannot stop the resulting vortex
annihilation.

In the following, we discuss the case of partially pinned
but noncollapsing scroll waves. The example in Fig. 1(e)
shows that the rotation phase lacks azimuthal synchroni-
zation. Movies of such experiments reveal wave motion
that starts in the gap region and then rapidly moves along
the upper and lower half of the obstacle. To analyze this
motion and the corresponding twist pattern, we measure
the excitation phase ¢ along a circle tracing the outer edge
of the obstacle. The corresponding phase profiles are pa-
rameterized according to the circle’s azimuth 6 where § =
0 is the center of the gap. Our data show that the phase
profiles (@) approach near-stationary solutions within
several rotation periods of the pattern. This process tends
to be slower for thick rings than for thin ones. Figure 2
shows representative examples of the resulting phase pro-
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FIG. 2. Rotation phases of partially pinned scroll rings as a
function of the azimuthal angle for three different cut angles.
The gap in the O rings is centered around # = 0. Open and solid
symbols distinguish between unpinned and pinned intervals,
respectively. The curves graph the integrated, analytical solu-
tions in Egs. (3) and (4). The cut angles are 9 = 25° (triangles,
dotted), 60° (circles, continuous), and 101° (squares, dashed).
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files for three different cut angles. Notice that the flanks of
the curves are nearly linear indicating a constant twist of
the scroll wave. The absolute value of this twist and the
maximal phase variation increases with the cut angle.

We compare our experimental data to solutions of
Burgers’ equation. In terms of the phase and twist (7 =
&) dynamics on a ring, this equation can be written as [7]

b, = w + c(¢g)* + Dyy, (D

T, = wy + cT79 + DTyp, 2)

where o is the local spiral rotation frequency for an
untwisted scroll wave and the subscripts ¢ and 6 indicate
partial derivatives with respect to time and azimuthal
angle, respectively. Notice that in a heterogeneous system,
o may depend on 6. The system-specific parameters ¢ and
D have units of frequency and differ from the conventional
diffusion constants of the Burgers equation by a factor of
1/R? where R is the ring radius.

In general, Eqns. (1) and (2) cannot be solved in closed
form. However, for some w(#), we can find solutions for
the asymptotic state when ¢, = () is constant. To describe
the experimental situation, we approximate w(6) as piece-
wise constant equalling the frequency of the free scroll
wave within the gap and the frequency of the fully pinned
scroll along the O ring. In the following, we distinguish
these two intervals by using the subscript “p” for the
pinned region and “u” for the (unpinned) gap region.
Then, we are interested in the stationary solutions of Eqn.
(2) where wyz = 0. Moreover, these solutions must fit the
symmetry of the O ring and match at the boundary between
intervals “p’” and “u.” These solutions are

7 (0) = Ag tanh[A(r — |6])], 3)

7 (0) = —Bg tan(B6). @

The latter equations describe twisted scroll waves with
constant rotation frequencies, ), = w, + A2D?/c and
Q, = w, — B*D?/c, where w,, and w,, are the frequencies
of the untwisted pinned and free scrolls, respectively.

Notice that the phase has to be differentiable and its
derivative (the twist) continuous, particularly at the bound-
ary between the pinned filament and the free filament. This
constraint, along with the condition that every point on the
wave rotates with the same frequency 1, = €1, yields the
following criteria for the constants A and B:

Atanh[A(7 — 3/2)] = Btan(B9/2), 5)
D2
w, —w,=(B*+ AZ)T’ (6)

which, for given values of ¢ and D, can be solved numeri-
cally for A and B. Notice that B < 77/ to rule out singu-
larities in 7,(#) and A, B > 0 without loss of generality.

This analysis yields best agreement with our experimen-
tal data for c = 4.8 X 107* s tand D = 3.5 X 1074 s~ 1,
which are used throughout this Letter and correspond to
diffusion coefficients of 4.7 X 107> cm?/s and 3.5 X
1073 cm?/s, respectively (R = 3.1 mm). For instance,
the continuous curves for the phase in Fig. 2 are based
on the integrated expressions for twist in Eqgs. (3) and (4)
and agree well with the measured phase profiles along the
obstacle. Notice that we can calculate the slope of the
phase ¢ in the range where it is nearly linear. This slope
corresponds to the largest absolute value of the twist, 7.,
which in our measurements is approximately the value of
|7| at § = =9/2:

Q
Tmax = AD/c = ff’ (7)

Within the gap region, the theoretical curves show larger
deviations from the experimental data. We suggest that
these deviations stem primarily from our simple assump-
tion that the filament traces the O ring’s outer perimeter
within the gap region. However, our experiments show that
the filament might actually be better described by a straight
line which is shifted towards the inner perimeter of the
obstacle. For the sake of clarity and brevity, possible
corrections are not discussed here. Moreover, the detailed
wave dynamics in very close vicinity to the end points of
the obstacle are poorly understood and might not be ade-
quately described by a reduction to a one-dimensional
filament.

To further characterize the partially pinned scroll rings,
we measured their angular frequency as a function of the
cut angle . As shown in Fig. 3, the frequency increases
with increasing gap size in a sigmoidal fashion. Notice that
the values for 4 = 0 and 27 equal the frequencies of the
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FIG. 3. Angular rotation frequency of partially pinned scroll
rings as a function of the obstacle’s gap size. Notice that ¢ = 0
and 27 are the fully pinned and unpinned cases, respectively.
The continuous curve is the theoretical prediction in terms of
Burgers’ equation.
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FIG. 4. Angular rotation frequency of partially pinned scroll
rings as a function of the frequency difference Aw = 0, — w,,
for ¢ = 55°. This difference is increased by increasing the
thickness r of the O ring at constant w,. The continuous line
is the theoretical prediction in terms of Burgers’ equation.

fully pinned and unpinned (i.e., free) scroll ring, respec-
tively. Each experiment was repeated at least three times,
and error bars represent standard deviations. The continu-
ous curve in Fig. 3 is calculated from the equation for (),
(or equivalently €),) given above. We find excellent agree-
ment with the experimental data.

Qualitatively, the results in Fig. 3 can be understood by
considering the fast in-gap rotation as a “motor” that
twists the slower, pinned part of the scroll ring. This
process is limited by the reaction-diffusion-controlled
characteristics of the system and results in a stationary,
twisted rotation pattern. The strength of the twisting action,
however, does not only depend on the gap width but also on
the frequency difference Aw between the freely rotating
and fully pinned scroll ring. In our experiments, we vary
this difference by changing the width r of the employed
O ring, which changes the value of w, while keeping w,
constant. Figure 4 shows the stationary rotation frequency
of the scroll ring as a function of Aw for a constant cut
angle of approximately 55°. Notice that large values of Aw
correspond to thick obstacles. The measured values of ()
(Fig. 4) decrease in a nearly linear fashion with Aw. The
continuous curve is calculated based on Egs. (3)—(6). It is
in good agreement with the experimental data, but slightly
overestimates the observed frequencies at large Aw. These
deviations might be due to the aforementioned reposition-
ing of the filament in the gap region, which is more
pronounced for large r. Furthermore, it might also suggest
that phase coupling [Egs. (1) and (2)] involves higher order
terms in 7 that are currently not considered. Unfortunately,
it is difficult to study patterns with even larger frequency
differences because such structures are readily enslaved
by other (spontaneously forming) vortices of higher
frequency.

In conclusion, we have presented concrete experimental
evidence that scroll wave can be pinned to solid obstacles.
We believe that this pinning is a universal feature of
heterogeneous excitable media and that it could greatly
affect the dynamics of vortices in biological systems where
inhomogeneities are abundant. In addition, we have dem-
onstrated that stable, partial pinning is possible causing
twisted patterns that are stationary solutions of Burgers’
equation. Future studies should explore the processes of
filament capture, possible limitations of scroll pinning, and
filament unpinning.

This material is based upon work supported by the
National Science Foundation under Grant No. 0513912.
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