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S. Hilaire, M. Girod, and S. Péru
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We present the first Gogny-Hartree-Fock-Bogoliubov (HFB) model which reproduces nuclear masses

with an accuracy comparable with the best mass formulas. In contrast with the Skyrme-HFB nuclear-mass

models, an explicit and self-consistent account of all the quadrupole correlation energies are included

within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2149 measured

masses is 798 keV. In addition, the new Gogny force is shown to predict nuclear and neutron matter

properties in agreement with microscopic calculations based on realistic two- and three-body forces.

DOI: 10.1103/PhysRevLett.102.242501 PACS numbers: 21.10.Dr, 21.30.�x, 21.60.Ev, 21.60.Jz

Astrophysical considerations require us to build nuclear-
mass models that have as rigorous a footing as possible
(see [1] for a review on the r-process nucleosynthesis and
the importance of nuclear masses). In this way one might
hope to be able to extrapolate from the mass data, which
cluster fairly closely to the stability line, out towards the
neutron-drip line, and make reliable estimates of the prop-
erties (including masses) of nuclei that are so neutron rich
that there is no hope of measuring them in the foreseeable
future. To this end, a series of nuclear-mass models have
been developed on the basis of mean-field models. So far,
only the nonrelativistic Hartree-Fock-Bogoliubov (HFB)
method with Skyrme and contact-pairing forces, in which
the force parameters are fitted to essentially all the experi-
mental mass data, has led to competitive mass formulas
with respect to the more traditional macroscopic-
microscopic mass formula based on the liquid drop ap-
proach [2] or other global approaches [3] (the use of the
term ‘‘mass formula’’ follows the usual designation of any
semiempirical mass model that has been fitted to essen-
tially all mass data and for which a complete mass table,
running from one drip line to the other, has been con-
structed). The Skyrme-HFB approach, together with phe-
nomenological Wigner terms and correction terms for the
spurious collective energy, has proven its capacity to re-
produce the 2149 experimental masses [4] with a root
mean square (rms) deviation similar to or even better
than the best dropletlike models [5,6]. Although the
Skyrme-HFB method has opened a new era in the con-
struction of mass formulas, it remains to be tested with
respect to other microscopic approaches, like the relativis-
tic mean-field model or with respect to finite-range inter-
actions, such as the Gogny interaction. Furthermore,
effects beyond mean field are known to affect predictions
significantly [7] but have either been crudely approximated
or totally neglected in the previous mass formulas.

In this Letter, we present the first mass formula obtained
within the HFB framework with a Gogny interaction tak-

ing into account all the quadrupole correlations self-
consistently and microscopically. Though the existing
Gogny forces like D1S or D1N present global properties
in agreement with most observables, they are not suited for
an accurate estimate of nuclear masses [8]. In contrast to
the Skyrme-HFB calculations which reach a 0.6–0.7 MeV
rms deviation with respect to the bulk measured masses,
existing Gogny interactions cannot predict masses with an
rms better than typically 2 MeV. For this reason, a new
Gogny force has been developed and fitted to all measured
masses, keeping the additional constraint to provide reli-
able nuclear matter and neutron matter properties, but also
radii, giant resonance, and fission properties. In addition,
for the first time the quadrupole collective corrections are
included in the mass formula by solving the collective
Schrödinger equation with the 5-dimensional collective
Hamiltonian (5DCH) [9].
The Gogny-HFB model.—The Gogny HFB model has

been described in length in various publications (see
Refs. [8,10,11] and references therein). In the present
work, we use both an axially and a triaxially deformed
HFB code to perform the calculations. These are written in
terms of an expansion of the single-particle functions in a
harmonic-oscillator basis. The triaxial code is used here to
determine the quadrupole corrections to the total binding
energy and the charge radius. These are estimated within
the 5DCH model [9] by

�Equad ¼ EMF � EBMF; (1)

where EMF is the mean-field (MF) energy obtained in the
axial symmetry approximation and EBMF is the binding
energy obtained beyond the mean-field (BMF) approxima-
tion, i.e., including the quadrupole corrections treated with
the 5DCH model. Similarly, dynamical corrections are
known to affect significantly the nuclear radius. The quad-
rupole correction to the charge radii is estimated by

�rquad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2BMF � r2MF

q
; (2)
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the final charge radius being estimated by r2th ¼
r2MF þ �r2quad. Note that the quadruple corrections are cal-

culated for even-even nuclei only and interpolated from
those for the others. For closed shell nuclei, the Gaussian
overlap approximation used within the 5DCH approach
gives erroneous negative corrections. For those nuclei,
the correction is therefore set to zero.

The total binding energy reads Eth ¼ Eaxial þ�Equad þ
�E1 where in addition to the quadrupole correlations, an
infinite-basis correction �E1 is introduced due to the
limitation of the number of major shells included in the
axially symmetric calculation. The same procedure as
described in Ref. [10] is followed to estimate �E1. If the
energy Eaxial obtained with the axial code using N & 14
major shells can be determined within a reasonable com-
putation time, this is not the case for both�E1 and�Equad.

Therefore, to avoid intractable calculations, the adjustment
of the Gogny force parameters to reproduce at best the
experimental masses is not performed by systematically
calculating these correction terms. Instead, the computa-
tional scheme described below is followed.

Fitting strategy.—A mass fit entails that every nucleus
that is included in the fit has to be calculated many times
over. Making a direct fit with a deformed HF code to all of
the more than 2000 measured masses imposes a very
serious strain on one’s computer facilities, so that in prac-
tice, a specific strategy needs to be followed, especially in
view of the large number of free parameters (typically 14)
and the many observables that need to be fitted. The Gogny
effective nuclear interaction (plus spin-orbit term) is ex-
pressed [11] as

Vð1; 2Þ ¼ X
j¼1;2

e�ð~r1�~r2Þ2=�2
j ðWj þ BjP� �HjP�

�MjP�P�Þ þ t0ð1þ x0P�Þ�ð ~r1 � ~r2Þ

�
�
�

�
~r1 þ ~r2

2

��
� þ iWLSr

 
12�ð~r1 � ~r2Þ

� ~r12:ð ~�1 þ ~�2Þ; (3)

where P� (P�) is the two-body spin- (isospin-) exchange
operator. From the 14 interaction parameters, it is possible
to express [12] the parameters of symmetric infinite nu-
clear matter (INM) at the equilibrium density �0 [or equiv-

alently the Fermi momentum kF ¼ ð3=2�2�0Þ1=3], namely,
the energy per nucleon av, the symmetry coefficient J, the
effective mass m�, and the incompressibility coefficient
Kv. These five parameters are explicitly introduced in the
fits instead of 5 of the Gogny force parameters. Starting
from a trial force providing a first estimate of �Equad and

�E1, the following 3-step reiterative procedure is adopted:

(i) The 5 INM parameters as well as the spin-orbit
parameter WLS are adjusted through an automatic optimi-
zation procedure to minimize the rms deviation with re-
spect to experimental masses [4]; the 5 INM parameters
are, however, kept within their corresponding experimental
ranges [5,8].
(ii) The remaining parameters (only the � and x0 pa-

rameters are kept fixed) are manually adjusted to optimize
quantitatively the rms deviation with respect to known
charge radii [13] (in practice, this corresponds essentially
to a modification of kF) and qualitatively to the energy
density curves of the infinite neutron matter (to agree with
the realistic calculation of [14]) and symmetric matter in
the four spin-isospin channels to agree with [15]. Any
modification at this stage is fed back into step (i) to ensure
an optimum mass prediction.
(iii) As soon as an acceptable reproduction of all the

above-mentioned observables is achieved, the �Equad and

�E1 correction energies are reestimated and the new force
is fed back into step (i). A new iteration cycle begins until
all the conditions are properly fulfilled with one unique
force.
Results.—The parameters of our final Gogny force,

called D1M, are given in Table I and the corresponding
INM parameters in Table II. The deviations between all the

TABLE I. Values of the D1M interaction parameters.

i Wi Bi Hi Mi �i

[MeV] [MeV] [MeV] [MeV] [fm]

1 �12 797:57 14 048.85 �15 144:43 11 963.89 0.50

2 490.95 �752:27 675.12 �693:57 1.00

t0 x0 � WLS

[MeV fm4] [MeV fm5]

1562.22 1 1=3 115.36

TABLE II. INM parameters for D1M at equilibrium density
�0. G0 and G00 are the corresponding Landau parameters [12].

�0 [fm�3] av [MeV] J [MeV] m�=m Kv [MeV] G0 G00
0.165 �16:026 28.554 0.746 225.0 �0:013 0.711

FIG. 1. Differences between measured [4] and D1M masses,
as a function of the neutron number N.
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2149 measured masses and the new D1M predictions are
shown graphically in Fig. 1.

The rms values of these deviations are given in Table III.
In particular, the rms deviation on masses amounts to
0.798 MeV, i.e., an accuracy comparable to the best avail-
able nuclear-mass formulas and by far better than the one
obtained with previous Gogny forces. It should be noted
that in the present calculation, no Wigner correction has
been included.

If we only consider the 2000 nuclei with jN � Zj> 2,
the rms deviation is 0.771 MeV. As shown in Fig. 1, no
deviation exceeds 3.2 MeV. However, as in all Skyrme-
HFB mass formulas, the highest deviations occur around
magic numbers, in particular, masses in theN ’ 126 region
remain significantly overbound. The inclusion of the
particle-vibration coupling effects, known to modify the
single-particle level density at the Fermi energy and con-
sequently the amplitude of the shell effect, could change
this trend.

The quadrupole correction energies obtained self-
consistently with D1M are shown graphically in Fig. 2
and compared with those of D1N. They amount to no
more than 5 MeV, but remain sensitive to the interaction,
in particular, to the pairing strength and the effective mass.
The quadrupole corrections obtained with different inter-
actions (Fig. 2) typically affect the rms deviation by a few
hundred keVs. This remains relatively large with respect to
the mass model accuracy, so that it is mandatory to recal-

culate self-consistently the corrections at the end of a
fitting iteration.
As shown in Fig. 3, the neutron matter equation of state

obtained with D1M is in close agreement, both with the
D1N prediction and the realistic calculation of Friedman-
Phandharipande (FP) [14] considered here as the reference
curve.
Similarly, Fig. 4 shows the potential energy per particle

for symmetric nuclear matter in each of the four two-body
spin-isospin (S, T) channels for both D1M and Brueckner-
Hartree-Fock (BHF) calculations with realistic two- and
three-nucleon forces [15]. Note that the BHF calculations
are still affected by non-negligible uncertainties (see, for
example, [16]), so that only qualitative conclusions from
such a global comparison of the interaction can be drawn.
In this respect, a fair agreement between D1M and the
realistic calculations can be seen in all states, in particular,
the repulsive nature of the (S ¼ 0, T ¼ 0) state that is
usually not reproduced by effective Skyrme interactions
[16]. However, a different density dependence is found in
the even-singlet (S ¼ 0, T ¼ 1) channel which is con-
strained by the pairing. In contrast to D1N predictions,
we obtain with D1M the correct sign for the isovector
splitting of the effective mass for neutron-rich matter,
i.e., a higher neutron than proton effective mass m�n > m�p

TABLE III. rms (�) and mean ( ��) deviations between data and
D1M predictions (energies in MeV, radii in fm).

� ��

2149 masses [4] 0.798 0.126

2000 masses with jN � Zj> 2 [4] 0.771 0.155

1988 neutron binding energies [4] 0.538 0.004

1868 	-decay energies [4] 0.657 0.015

707 charge radii [13] 0.031 �0:008

FIG. 2. (a) D1M quadrupole correction energies as a function
of the neutron number for all nuclei considered here.
(b) Difference between the quadrupole energies obtained with
D1N and D1M for even-even nuclei with N � 200.

FIG. 3 (color online). Energy per neutron as a function of
neutron matter density for D1N (dashed line), D1M (solid
line), and for the calculations of Ref. [14] (FP; symbols).

FIG. 4 (color online). Potential energy per particle in each (S,
T) channel for BHF calculations [15] and D1M as a function of
density for symmetric infinite nuclear matter.
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at all positive asymmetries. Such an isovector splitting of
the effective mass is consistent with measurements of
isovector giant resonances [16], and confirmed in several
many-body calculations with realistic forces [17].

The new D1M force has also been tested with respect to
various additional observables, such as the kinetic moment
of inertia in Er or Pu nuclei, the giant monopole, dipole,
and quadrupole energy in 208Pb derived within the random-
phase approximation (see Table IV), and the energy of the
lowest 2þ levels for the 519 even-even nuclei for which
experimental data are available [21]. For all these observ-
ables, D1M and D1N give very similar results.

We have constructed a complete mass table including
all nuclei in the range Z and N � 8 and Z � 110 located
between the proton and neutron-drip lines. In Fig. 5, we
compare these predictions with those of the ‘‘best-fit’’
Skyrme-HFB model (HFB-17) [6] and of the finite-range
droplet model (FRDM) [2]. In both cases we see that
despite the close similarity in the quality of the fits to the
data given by these different models, large differences can
emerge, especially for heavy nuclei (Z > 80) and as the
neutron-drip line is approached (N > 160).

Conclusions.—We have described the first Gogny-HFB
nuclear-mass model based on the D1M interaction. The
rms deviation with respect to essentially all the available
mass data has been reduced from typically a fewMeV with
previous interactions to less than 0.8 MeV. Furthermore,
for the first time, the mass formula takes an explicit and

self-consistent account of all the quadrupole correla-
tions affecting the binding energy. The quadrupole cor-
rections are estimated microscopically on the basis of a
5-dimensional collective Hamiltonian with the same D1M
interaction. Given also the constraint imposed on the
Gogny force by microscopic calculations of neutron matter
and symmetric nuclear matter, this new model is particu-
larly well adapted to astrophysical applications such as the
r process of nucleosynthesis. Different improvements to
the mass model should still be brought, in particular,
including octupole correlations or generalizing the
Gogny force by introducing a finite range to the density-
dependent term [12].
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FIG. 5. Differences between (a) D1M and HFB-17 [6] masses
and (b) D1M and FRDM [2] masses for all Z, N � 8, Z � 100
nuclei between the proton and neutron-drip lines.

TABLE IV. 208Pb giant monopole (GMR), dipole (GDR), and
quadrupole (GQR) resonance energies (in MeV) compared with
experimental data for D1S, D1N, and D1M.

D1S D1N D1M Exp.

GMR 13.37 14.18 14.25 14.17 [18]

GDR 16.37 14.50 15.85 13.43 [19]

GQR 11.98 11.99 12.14 10.60 [20]
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