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A phase diagram is a graph in parameter space showing the phase boundaries of a many-particle

system. Commonly, the control parameters are chosen to be those of the (generalized) canonical

ensemble, such as temperature and magnetic field. However, depending on the physical situation of

interest, the (generalized) microcanonical ensemble may be more appropriate, with the corresponding

control parameters being energy and magnetization. We show that the phase diagram on this parameter

space looks remarkably different from the canonical one. The general features of such a microcanonical

phase diagram are investigated by studying two models of ferromagnets with short-range interactions. The

physical consequences of the findings are discussed, including possible applications to nuclear fragmen-

tation, adatoms on surfaces, and cold atoms in optical lattices.
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Cooperative effects can lead to remarkable properties of
many-body systems, and the occurrence of a phase tran-
sition is a prime example of such an effect. At a phase
transition, the macroscopic properties of a many-particle
system change abruptly under variation of a control pa-
rameter. Typical examples of phase transitions are the
evaporation of a liquid at temperatures above its boiling
point, or the onset of a spontaneous magnetization in a
ferromagnet below its Curie temperature. In a thermody-
namic description, phase transitions are signaled by non-
analyticities of thermodynamic functions like the free
energy density. For example, when discussing the phases
and phase transitions of a ferromagnet, the Gibbs free
energy density gðT; hÞ as a function of the temperature T
and the external magnetic field h is considered. The so-
called phase diagram is obtained by plotting in parameter
space the nonanalyticities of g, i.e., the points or lines in
the ðT; hÞ plane at which this function is not infinitely many
times differentiable. Whenever the parameters T and h are
varied along a path crossing such a point or line of non-
analyticities, the system will undergo a phase transition.
For a ferromagnet, such a phase diagram has a very simple
appearance (see Fig. 1).

This is how a phase transition appears on the macro-
scopic, thermodynamic level of description. On a more
fundamental level, statistical physics provides a micro-
scopic description underlying the thermodynamic one.
Under suitable conditions on the interactions, thermody-
namics can be recovered from the statistical description in
the thermodynamic limit of infinite number of degrees of
freedom. In equilibrium statistical physics, statistical
weights are associated to the various microstates of a
system, and the choice of these weights depends on the
physical situation the system is in. Different physical situ-
ations are described by the so-called statistical ensembles.

The microcanonical ensemble, for example, is appropriate
for the description of an isolated system at fixed energy,
whereas the canonical ensemble describes a system in
equilibrium with an infinitely large heat bath of tempera-
ture T. For a suitable class of short-range interactions, both
ensembles are known to give equivalent results in the
thermodynamic limit (see [1] for details). For long-range
interactions, however, equivalence may be violated, in
particular, whenever a discontinuous phase transition takes
place in the canonical ensemble [2].
But also in the case of short-range interactions when

different ensembles yield equivalent results in the thermo-
dynamic limit, an important difference remains, which we
would like to discuss, taking again a simple ferromagnet as
an example: Canonically, the temperature T and the exter-
nal magnetic field h are the relevant control parameters.
Microcanonically, however, this is no longer true. In a
(generalized) microcanonical ensemble, the energy (den-
sity) " and the magnetization (density) m are the natural
control parameters corresponding to T and h [3]. Working
in this microcanonical ensemble, one would naturally ask:
What does the phase diagram corresponding to the one in

FIG. 1. Phase diagram of a simple ferromagnet. The bold line
marks the parameter values in the ðT; hÞ plane at which the Gibbs
free energy density gðT; hÞ is nonanalytic.
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Fig. 1 look like in the ð";mÞ plane? This diagram then
could readily answer the question whether, upon variation
of " and m along a certain path, the system undergoes a
phase transition or not. Remarkably, such amicrocanonical
phase diagram looks very different from its canonical
counterpart. Moreover, although the microcanonical en-
semble is the most fundamental one among the statistical
ensembles, little is known about these issues. To some
extent, this is also due to the fact that studies in the micro-
canonical ensemble, either analytically or numerically, are
typically more demanding than in the canonical ensemble.

In this Letter, we present two case studies which serve to
illustrate the general properties of microcanonical phase
diagrams of short-range interacting ferromagnets. The first
example is the spherical model with nearest-neighbor in-
teractions on a d-dimensional hypercubic lattice, for which
analytical results are presented. Second, numerical results
are reported for the Ising model with nearest-neighbor
interactions on a two-dimensional square lattice.
Remarkably, both models show two distinct transition lines
in the ð";mÞ plane which, for fixed magnetization m, may
be crossed upon variation of the energy ". In the conclu-
sions, these unexpected results are discussed, in particular,
as what regards physical realizations of an ensemble where
both " and m are fixed.

Spherical model.—Introduced by Berlin and Kac [4] in
1952, this model was constructed to show a ferromagnetic
phase transition while being exactly solvable. The degrees
of freedom �i 2 R are associated to the sites of a
d-dimensional hypercubic lattice. The energy of a micro-

state � ¼ ð�1; . . . ; �NÞ of N degrees of freedom is

Hð�Þ ¼ �J
X

hi;ji
�i�j � h

X

i

�i; (1)

where J > 0 is a coupling constant determining the
strength of the exchange interaction. The angular brackets
denote a summation over all pairs of nearest neighbors on
the lattice. In addition, the �i are required to satisfy the
spherical constraint

P
i�

2
i ¼ N. In the canonical ensemble,

the spherical model is exactly solvable in the thermody-
namic limit for arbitrary spatial dimension d, and a tran-
sition from a ferromagnetic phase at low temperatures to a
paramagnetic phase at high temperatures occurs for d � 3.
Starting point for a calculation in the microcanonical

ensemble is the density of states as a function of energy "
and magnetization m,
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whereMð�Þ ¼ P
N
i¼1 �i yields the total magnetization of a

microstate. An analytic calculation of �N is reported in
[5], but the saddle point analysis proposed in that paper
works only within a certain range of " and m values. This
can be seen by starting from Eqs. (25) and (26) of Ref. [5]
and by explicitly performing two of the integrations, re-
writing the density of states for large N as
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A derivation of this result will be given elsewhere. Because
of the logarithm in (3), the integrand of the z integration
has two branch cuts on the real line. Apart from these
branch cuts, the integrand is holomorphic, and the contour
of integration can be deformed freely, as long as it does not
cross the cuts. For an asymptotic evaluation of the integral
in the large-N limit by means of the method of steepest
descent, the path of integration in the complex plane is
deformed such that its imaginary part becomes zero. In this
limit, the value of the integral is given by the integrand of
the z integration in (3) evaluated at the maximum along
that path. Depending on the values of " and m, this maxi-
mummay either be a saddle point of the exponent in (3), or
located at one of the end points of the branch cuts. The
transition between these two types of behavior accounts for
nonanalyticities of the microcanonical entropy in the ther-
modynamic limit [6],

sð";mÞ ¼ lim
N!1

1

N
ln�Nð";mÞ; (4)

and hence for the occurrence of phase transitions [7]. Note
that, contrary to what has been conjectured in [8,9], the

entropy s of the spherical model is found to be a concave
function on its entire domain. By means of an asymptotic
analysis of Eqs. (3) and (4), the values of " andm for which
sð";mÞ becomes nonanalytic can be computed, yielding

"�ðmÞ ¼ �dJ
m2 þ ad½m2 � ð1�m2Þ�

1þ ad
(5)

with

ad ¼
Z

½0;�Þd
dd’

�d

P
d
j¼1 cos’j

d�Pd
j¼1 cos’j

: (6)

Plotting the two curves "�ðmÞ in the ð";mÞ plane, the
microcanonical phase diagram of the spherical model is
obtained (see Fig. 2 for a plot of the d ¼ 3 case).
This microcanonical phase diagram looks remarkably

different from its canonical counterpart in Fig. 1, and even
an experienced statistical physicist, we suspect, would
have had problems predicting its shape. Varying, for ex-
ample, the energy " while keeping fixed the magnetization
at any value ofm, one typically crosses two transition lines
in the phase diagram, therefore observing two phase tran-
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sitions, signaled by kinks in the specific heat. Similarly,
four transition lines are crossed upon variation of the
magnetization while keeping the energy " fixed at any
value �d < " < "þð0Þ, while two transition lines are
crossed for energies "þð0Þ< "< "�ð0Þ.

The dashed line in Fig. 2 corresponds to a transition
from a ferromagnetic to a paramagnetic phase, and the
region to the left of this line is the coexistence region.
When switching to the canonical ensemble by means of a
Legendre-Fenchel transform, the entire coexistence region
is mapped onto the transition line in the canonical phase
diagram. The solid line in Fig. 2, in contrast, has no
counterpart in Fig. 1, mainly due to the fact that this
transition occurs at negative microcanonical inverse tem-
peratures ds=d". So what kind of phase is then found to the
right of this second transition line? At least for vanishing
magnetization m, one can argue that, upon crossing this
line, a transition to an antiferromagnetic phase takes place
[10]. For m � 0, however, an interpretation of the transi-
tion is more difficult since m is not an order parameter of
the antiferromagnetic transition.

Two-dimensional Ising model.—The Ising model is ar-
guably the most studied model in the theory of phase
transitions, serving as a test case also for our aim of
computing the microcanonical phase diagram. Its energy
function is formally equivalent to that of the spherical
model on a two-dimensional square lattice as given in
Eq. (1), but the degrees of freedom �i 2 f�1;þ1g take
on only discrete values. Again, the angular brackets denote
a summation over all pairs of nearest neighbors on the
lattice. For vanishing external field h and in the thermody-
namic limit, this model is known to undergo a phase
transition from a ferromagnetic phase at low temperatures
to a paramagnetic phase at high temperatures, taking place

at a critical inverse temperature �c ¼ lnð1þ ffiffiffi
2

p Þ=2. The
analytic solution for the free energy density was obtained
by Onsager in 1944 [11]. For h � 0, however, no analytic
solution is known. In the microcanonical framework, this
corresponds to the fact that analytic results exist only for
some regions in the ð";mÞ plane, but not for all.
Consequently, we will resort to numerical methods in order
to compute the microcanonical phase diagram.

We use a Monte Carlo histogram method discussed in
[12] in the context of the Ising model with fixed magneti-
zation. For square Ising systems composed of N ¼ L2

lattice sites, we compute the density of states �Nð";m0Þ
for a clamped value of the magnetization m ¼ m0. In a
microcanonical analysis, quantities of interest are directly
derived from �Nð";m0Þ or, equivalently, from the micro-
canonical entropy sNð";m0Þ¼ ln�Nð";m0Þ=N. The micro-
canonical specific heat at fixed magnetization m ¼ m0, for
instance, is given by cð"Þ ¼ �½ds=d"�2=½d2s=d"2�. It is
this quantity that we use for our investigation of the micro-
canonical phase diagram of the two-dimensional Ising
model, mainly by looking for peaks in the specific heat
which can be viewed as finite-system precursors of non-
analyticities occurring in the thermodynamic limit.
Figure 3 summarizes our results for systems composed

of 100� 100 spins. When looking at the microcanonical
specific heat at a certain (for practical reasons not too
large) value of the fixed magnetization, we observe two
peaks. One peak occurs at lower energies, signaling the
crossing of the coexistence line which separates the ferro-
magnetic phase from the paramagnetic phase (not shown)
[12–14]. A second peak is observed for much larger en-
ergies, as shown in Fig. 3(a). The positions of these peaks
shift to smaller energies when the fixed value of the mag-
netization increases. We have plotted the peak positions in
the ð";mÞ plane in Fig. 3(b), yielding the microcanonical
phase diagram of the Ising model. The phase diagram of
the Ising model strikingly resembles the corresponding
phase diagram of the spherical model shown in Fig. 2. In
both cases, there is a range of magnetizations for which
lines at fixed energy cross two different transition lines.
Note that for the Ising model, we are not able to determine
whether the new line extends all the way down to the
ground state, as this line rapidly closes in on the boundary
of the microcanonical entropy’s support.

FIG. 2 (color online). Microcanonical phase diagram of the
spherical model on a three-dimensional cubic lattice. The micro-
canonical entropy s is defined only within the gray shaded region
in the ð";mÞ plane. Within each of the three gray shaded
subregions, the entropy is analytic, but not so on their boundaries
which are given by Eqs. (5) and (6).
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FIG. 3 (color online). (a) Microcanonical specific heat as a
function of energy " for fixed values of the magnetization m ¼
m0. From top to bottom: m0 ¼ 0, 0.05, 0.1, 0.125, 0.15. The
peaks reveal the presence of a phase transition line at relatively
high energies. The data shown have been obtained for systems
composed of 100� 100 spins. (b) Resulting microcanonical
phase diagram of the two-dimensional Ising model. The dashed
line is the line of spontaneous magnetization separating the
ferromagnetic phase at low energies from the paramagnetic
phase. The solid line is new and should be compared with the
corresponding line in the microcanonical phase diagram of the
spherical model in Fig. 2.
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In order to check the robustness of our findings for the
Ising model, we also studied larger systems with up to
600� 600 spins. We observe that the peaks increase in
height and get sharper for increasing system sizes, as
expected for a phase transition. The positions of the peaks
shift slightly towards larger values of " when increasing
the system size, but this shift is so small that it remains
within the thickness of the line on the scale of Fig. 3(b). For
very large systems, it is extremely difficult to obtain the
high quality data needed for a microcanonical analysis, and
wewere not able to make a quantitative study of the change
in peak height and position.

Discussion.—The phase diagrams discussed above rep-
resent a physical situation in which both energy " and mag-
netization m can be controlled externally. Considering the
spherical model or the Ising model properly as models of
ferromagnets, control of the energy may well be imagined
in an experimental setup energetically isolated from the
environment. Direct control of the magnetization, however,
appears difficult—if not impossible—to achieve. But fer-
romagnetic spin models have a wide range of applications,
going well beyond the modeling of ferromagnetic materi-
als, both in classical and quantum physics. Following Lee
and Yang, the Ising model can be mapped onto a lattice gas,
in which the magnetization within the first model formally
corresponds to the particle density within the latter [15].
Control of the particle density is of course an experimen-
tally realistic scenario, and in this situation, the micro-
canonical phase diagrams of ferromagnetic models can
provide relevant information. Examples include the Ising
model as a model of nuclear matter fragmentation [16] or
as a model of adatoms on a crystal surface [17]. Cold atoms
in an optical lattice are another possible experimental
realization: After switching off the cooling, total energy
and number of atoms are conserved to a very good degree,
rendering appropriate a description as a lattice gas in the
microcanonical ensemble. The interactions between the
atoms can be tuned via Feshbach resonances, allowing to
realize, among others, Ising-type interactions [18].

A comment is in order on the short-range nature of the
interactions in the two examples discussed. Although we
believe that the qualitative behavior of the microcanonical
phase diagram should not be restricted to nearest-neighbor
interactions, it surely does not extend to ferromagnets with
long-range interactions. This becomes obvious when con-
sidering, for example, the mean-field ’4 model. Although
this model undergoes a ferromagnetic transition, a calcu-
lation of the microcanonical entropy sð";mÞ as a function
of energy and magnetization yields a smooth function
[19,20]. Therefore, the microcanonical phase diagram of
the mean-field ’4 model in the ð";mÞ plane does not show
any transition lines at all. This can be seen as a conse-
quence of the nonequivalence of the microcanonical and
the canonical ensemble in this long-range interacting
model. Apart from short-range interactions, we also expect
an upper bound on the energy per particle to be essential
for the observed behavior. This is usually the case for spin

models, often allowing for negative microcanonical tem-
peratures to occur.
Conclusions.—We have computed microcanonical

phase diagrams in the parameter space of energy and
magnetization for two ferromagnetic models. The dia-
grams look remarkably different from the corresponding
canonical ones in the ðT; hÞ plane, with the consequence
that, when controlling " andm in a microcanonical setting,
the physical behavior differs significantly from the canoni-
cal situation in which T and h are controlled. For both
models investigated, the microcanonical phase diagrams
are qualitatively similar to each other, and we expect this to
extend to short-range ferromagnetic spin models more
generally. Finally, we have pointed out physical applica-
tions of microcanonical phase diagrams within the lattice
gas interpretation of the Ising model, including nuclear
fragmentation, adatoms on surfaces, and cold atoms in
optical lattices.

*kastner@sun.ac.za
†michel.pleimling@vt.edu

[1] D. Ruelle, Statistical Mechanics: Rigorous Results
(Benjamin, Reading, 1969).

[2] H. Touchette, R. S. Ellis, and B. Turkington, Physica A
(Amsterdam) 340, 138 (2004).

[3] Relating the microcanonical and the canonical ensemble
by means of a Legendre-Fenchel transform, " is thermo-
dynamically conjugate to �, and m to ��h, where � ¼
1=T is the inverse temperature and Boltzmann’s constant
has been set to unity.

[4] T.H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
[5] H. Behringer, J. Stat. Mech. (2005) P06014.
[6] Note that the free energy gð�; hÞ is the Legendre-Fenchel

transform of sð";mÞ.
[7] This mechanism of how nonanalyticities emerge from an

asymptotic evaluation of an integral is very similar to the
one observed by J. Farago [J. Stat. Phys. 107, 781 (2002)]
for nonequilibrium processes.

[8] M. Kastner, S. Schreiber, and O. Schnetz, Phys. Rev. Lett.
99, 050601 (2007).

[9] M. Kastner, O. Schnetz, and S. Schreiber, J. Stat. Mech.
(2008) P04025.

[10] This follows from a mapping of the model with negative
coupling J at positive temperatures onto the same model
with positive coupling at negative temperatures.

[11] L. Onsager, Phys. Rev. 65, 117 (1944).
[12] M. Pleimling and A. Hüller, J. Stat. Phys. 104, 971 (2001).
[13] M. Kastner, J. Stat. Phys. 109, 133 (2002).
[14] A. Hüller and M. Pleimling, Int. J. Mod. Phys. C 13, 947

(2002).
[15] T.D. Lee and C.N. Yang, Phys. Rev. 87, 410 (1952).
[16] J.M. Carmona, J. Richert, and A. Tarancón, Nucl. Phys. A

643, 115 (1998).
[17] T. Müller and W. Selke, Eur. Phys. J. B 10, 549 (1999).
[18] L.-M. Duan, E. Demler, and M.D. Lukin, Phys. Rev. Lett.

91, 090402 (2003).
[19] I. Hahn and M. Kastner, Phys. Rev. E 72, 056134 (2005).
[20] I. Hahn and M. Kastner, Eur. Phys. J. B 50, 311 (2006).

PRL 102, 240604 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
19 JUNE 2009

240604-4


