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We propose a new method for computing the ground state properties and the time evolution of infinite

chains based on a transverse contraction of the tensor network. The method does not require finite size

extrapolation and avoids explicit truncation of the bond dimension along the evolution. By folding the

network in the time direction prior to contraction, time-dependent expectation values and dynamic

correlation functions can be computed after much longer evolution time than with any previous method.

Moreover, the algorithm we propose can be used for the study of some noninvariant infinite chains,

including impurity models.
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Numerical simulation has become a fundamental tool to
study quantum many-body systems in condensed matter
physics. Unfortunately, the exponential scaling of the di-
mension of the Hilbert space with system size means that
brute-force methods are only practical for very small sys-
tem sizes. However, other techniques based on matrix
product states (MPS) [1–5], such as density matrix renor-
malization group (DMRG) [6], achieve excellent results in
one dimension.

The success of DMRG methods is based on the fact that
many interesting physical states, including the ground
states of many local Hamiltonians, can be well approxi-
mated by a MPS. For a chain of N d-dimensional systems,
this has the form

j�i ¼ Xd
i1;...;iN¼1

trðAi1
1 . . .AiN

N Þji1; . . . ; iNi: (1)

Each Ai
k is a D-dimensional matrix. An important feature

of MPS is that expectation values of local operators can be
efficiently computed, allowing them to be used variation-
ally. DMRG excels in the computation of static properties
of finite chains with local Hamiltonians, where the required
bond dimension grows slowly with the size of the system
[7,8], and of translationally invariant infinite chains [9,10].
However, these methods can break down in time-
dependent problems far from equilibrium and also encoun-
ter difficulties in dealing with infinite chains containing
impurities.

MPS algorithms for nonequilibrium dynamics [11–15]
work well when the system is close to its ground state, but
when the system is far from equilibrium the entanglement
entropy may grow linearly in time and the dimension D
required to describe the system will grow exponentially
[16–18], causing these methods to break down. Although
improved algorithms have been developed based on finite
propagation speed of correlations [19], all known methods
are limited to special cases or short times.

Here we propose an alternative method to compute both
ground states and dynamical quantities for infinite chains
within the MPS formalism. Based on the transverse con-
traction of the tensor network, it allows the study of prob-
lems not accessible by other methods, such as an impurity
in an infinite system. It enables the calculation of time-
dependent expectation values of local observables and of
few-body correlation functions at different times, in a new
much simpler way. Moreover, by a folding of the network
described below, the new method enables dynamical stud-
ies that range much further in time than any other existing
method.
The standard way of computing dynamical quantities

with the MPS formalism starts with a state that is (exactly)
described by a MPS (1). Then, some evolution operator is
applied to it for a given time, making use of a Suzuki-
Trotter expansion [20] of the total evolution operator.
Within each discrete time step, the evolution operator is
broken down into a product of operators. In particular, for a
nearest neighbor HamiltonianH ¼ P

ihi;iþ1, we may write

e�iH� � e�iHe�=2e�iHo�e�iHe�=2, where He (Ho) contains
the hi;iþ1 terms with even (odd) i, so that each exponential

factor is a product of mutually commuting local terms.
Alternatively, the evolution operator can be decomposed as
a product of translationally invariant matrix product opera-
tors (MPO) [21]. The action of one step of evolution on the
MPS can be computed by applying the corresponding
sequence of operators (Fig. 1) to yield a MPS with larger
bond dimension. This must be truncated to keep the best
MPS description of the evolved state with fixed dimension
D. After repeating this procedure for the required number
of steps, expectation values can be calculated in the
evolved state. The accuracy of the description will, how-
ever, drop exponentially with the successive truncations.
Our new method avoids this explicit truncation on the

bond dimension of the evolved MPS. The basic idea is to
look at the quantity that we want to compute, say the time-
dependent expectation value of some local operator,
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h�ðtÞjOj�ðtÞi, as the contraction of a two-dimensional
tensor network, and perform it, not along time, but in the
direction of space [see Fig. 2(a)]. To construct the network,
we start from the initial MPS and, for every evolution step,
apply the proper MPOs. Repeating this for the required
number of evolution steps, we construct the exact evolved
MPS (within the Trotter approximation), as no truncation is
carried out. Finally, we apply the local operator O and
contract with the Hermitian conjugate of the evolved state
as constructed before.

The procedure above produces a two-dimensional net-
work, infinite in the spatial direction as the original MPS,
but finite along the time direction. The expectation value
we want to compute can now be written as [5]

h�ðtÞjOj�ðtÞi ¼ lim
k!1

trðE½�k�
‘ . . .E½�1�E½0�

O E½1� . . .E½k�
r Þ;

where EðtÞ ¼ P
i
�AiðtÞ � AiðtÞ is the transfer matrix of the

evolved state, EOðtÞ ¼ P
i;j½ �AiðtÞ � AjðtÞ�hijOjji contains

the only application of the single-body operator, and the
bracketed superindices on each transfer matrix indicate the
site of the chain. For a translationally invariant MPO
representation of the evolution operator, the network re-
tains the invariance [22] and the transfer matrix is the same
on every site, except for the single one on which O acts
[23]. If the largest eigenvalue of EðtÞ, �, is nondegenerate,
EkðtÞ !

k!1 �kjRihLj. Effectively, we may then substitute the

left and right semi-infinite lattices at both sides of the
operator by the left and right eigenvectors of EðtÞ corre-
sponding to the largest eigenvalue, hLj and jRi,

hOðtÞi ¼ h�ðtÞjOj�ðtÞi
h�ðtÞj�ðtÞi ¼ hLjEOjRi

hLjEjRi : (2)

We now specify the algorithm for computing time-
dependent expectation values in translationally invariant
infinite chains. The first step is to find the best MPS
approximation, with given bond dimensionD, to the domi-
nant eigenvectors of EðtÞ. To this end, we repeatedly apply
the transfer matrix EðtÞ [already written as a MPO along
the time direction; see Fig. 2(a)] to the left and to the right
of an arbitrary initial MPS vector and truncate the result to
the chosen D, using the technique for two-dimensional
tensor networks introduced in [14,24], until convergence
is achieved. The procedure yields a MPS approximation to
the eigenvectors, with the truncation always taking place in
the space of transverse vectors. The second step, comput-
ing the numerator and the denominator in (2), can be done
very efficiently, as each term is a contraction of a MPO
acting between a pair of MPS. The adaptation of the
method to the case of imaginary time evolution is straight-
forward, so that it is also useful for finding ground state
properties. In this case, the network contraction is similar
to that in transfer matrix DMRG algorithms for thermal
states [25,26].
With this approach, we study an infinite chain with an

impurity. We consider an Ising chain,

H ¼ �
�X

i

�i
z�

iþ1
z þ gi�

i
x

�
; (3)

with gi ¼ 1 8 i � 0, and the impurity represented by a
different value of the field at site i ¼ 0, g0. The system is
started in a product MPS and imaginary time evolution is
applied for a long time, so that we approach the ground
state. Then we compute the site dependent magnetization

h�½i�
x i. Such a calculation cannot be easily done with a

purely invariant method as the infinite time-evolving block
decimation (iTEBD) algorithm[10], because the presence
of a singular site will affect a cone of tensors as time
increases. However, with the transverse method, the com-
putation of hLj and jRi is not modified by the presence of
the impurity [27]. Thus the cost of computing the expec-
tation value of a local operator acting on the position i ¼ 0
in the ground state of this chain will be the same as in the
translationally invariant case, while applying the operator
at i � 0 will reduce to the contraction of a 2D tensor
network of width iþ 3 (Fig. 3).

(a) (b)

FIG. 2 (color online). Computation of the expectation value.
The basic transverse method (a) renders a finite 2D network.
With the folding approach (b) operators for the same time step
are grouped together in a double effective operator.

(a) (b)

FIG. 3 (color online). Ising chain with magnetic impurity at the
origin. (a) Tensor network corresponding to the magnetization at
distance x from the impurity. (b) h�xi as a function of distance x.

(1) (2) (3)

FIG. 1 (color online). Standard time evolution with MPS. We
start with a MPS state, represented here by a chain of circles
(tensors) connected by summed indices, with open lines for the
physical spin indices. On this state, a sequence of MPO is
applied for each step of evolution (1), and the result is trun-
cated (2) to the maximal bond dimension D. After iterating the
evolution, expectation values are computed (3) in the final state.
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The capabilities of the transverse method regarding real time evolution can be further illustrated by the computation of
two-body correlators at different times. If we consider two different times, t2 > t1, we may write

h�ð0ÞjO½x�
2 ðt2ÞO½xþ��

1 ðt1Þj�ð0Þi ¼ h�ð0ÞjUðt2; 0ÞyO½x�
2 Uðt2; t1ÞO½xþ��

1 Uðt1; 0Þj�ð0Þi ¼ hLjEO2ðt2ÞE
��1EO1ðt1ÞjRi

hLjE�þ1jRi ; (4)

where E is the transfer matrix resulting from evolution
until time t2, and EOiðtÞ are the corresponding MPO con-
taining the action of each single-body operator [26,28].

In particular, if both operators act on the same site (� ¼
0), the computation has the same cost as one single expec-
tation value. If � � 0, computing (4) requires instead the
contraction of a two-dimensional network of width �þ 3.
This is done by applying one MPO at a time and truncating
to the closest MPS with the given bond D. Since the net-
work is now finite in both directions, this last phase of the
contraction can be done either in the spatial or in the time
direction.

The success of the transverse approach will depend on
whether the transfer matrix of the evolved MPS has a
nondegenerate dominant eigenvector which can be ap-
proximated by a MPS of reduced dimension. Our imple-
mentation shows that the procedure achieves comparable
results to the standard contraction [10] in a translationally
invariant chain. The transverse method offers the advan-
tage of being applicable to dynamical situations in which
translational symmetry is broken by a small number of
sites, such as a chain with impurities, or a semi-infinite
system, but it is also limited to short times.

However, there is a more efficient representation of the
entanglement in the transverse eigenvectors. In the MPO
representing the transfer matrix of the evolved MPS, ten-
sors that lie at the same distance from the center [occupied
by the physical operatorO as in Fig. 2(a)] correspond to the
same time step, coming from a certain term and its adjoint
in the Trotter decomposition. We can group such pairs
together in a new MPO by ‘‘folding’’ the original MPO
(see Fig. 2). The folding operation can be understood as
performing the equivalent asymmetric contraction

h�ðtÞjOj�ðtÞi ¼ h�jðOj�ðtÞi � j ��ðtÞiÞ where j ��ðtÞi is
the complex conjugate of the evolved vector and j�i ¼
�k

P
d
ik¼1 jik �iki is the product of (unnormalized) maximally

entangled pairs between each site of the chain and its
conjugate. In our scheme, the ket is now the tensor product
of two tensor networks corresponding to j�ðtÞi and its
conjugate. We may then group together each tensor in

j�i with the corresponding one in j ��i, and define an
effective tensor network of higher bond dimension and
physical dimension d2, which can now be contracted using
again the transverse technique.

This folded transverse method allows us to explore the
dynamics until much longer times than any other proce-
dure. We may get some physical intuition for this improve-
ment by looking at a single localized excitation that
propagates freely with velocity v. After time t, sites x�
vt in the evolved state become entangled. If we look

instead at the transverse MPS obtained contracting the
network from the right until xþ vt, it is easy to see that
all time sites are in a product, except for those correspond-
ing to the instant t. These sites occupy symmetric positions
around the center of the network, so that folding groups
them together in a single site which will be in a product
state with all the rest.
As a first benchmark for the new method, we simulate

the dynamics of states far from equilibrium under the Ising
Hamiltonian (3) with uniform magnetic field g. The initial
state j�0i ¼ �i

1ffiffi
2

p ðj0ii þ j1iiÞ is evolved with a constant

Hamiltonian and the results of the transverse method with
and without folding are compared to the exact results
(Fig. 4). For very short times the Trotter error dominates
in both methods. However, while for the transverse proce-
dure (as for iTEBD) truncation error soon becomes domi-

FIG. 4 (color online). Magnetization as a function of time. For
the Ising model (top) results for the transverse method (triangles)
are compared to the folded version (stars) for D ¼ 60; 120. The
relative error with respect to the exact result (solid line) is shown
in the inset. For the nonintegrable model (bottom), results with
the folded approach for D ¼ 60 (red dots), 120 (blue crosses),
240 (green stars) are compared to those of iTEBD (solid lines)
for increasing values ofD. In the inset, the required value ofD as
a function of time, for different levels of accuracy.
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nant, and the results deviate abruptly from the exact solu-
tion, the accuracy of the folded version is maintained for
much longer times.

To test the method on a more general problem, we repeat
the test for a nonintegrable Hamiltonian, H ¼
�ðPi�

i
z�

iþ1
z þ g�i

x þ h�i
zÞ. For this case there are no

exact results, but we may compare the folded computation
to the iTEBD simulations with a similar Trotter error
(Fig. 4). Again we check that the accuracy of the folded
procedure for comparable bond dimension reaches much
longer times. Moreover, remarkably enough, even when
the results from the folded method start deviating (from
those to which iTEBD converges for largeD), they do so in
a smooth way, so that, in contrast to other procedures, they
continue to qualitatively describe the evolution for long
times.

This can be seen in a more precise way by looking at the
truncation error. At a certain time, this can be estimated by
looking at the error in the right eigenvector for a given
bond dimension with respect to the best eigenvector ob-
tained, i.e., that for the highest D. If we plot (Fig. 4) the
bond dimension required to achieve a fixed truncation
error, we observe that, although the D required for a high
precision grows exponentially with time, with a relatively
low bond D< 100 a qualitative description of the dynam-
ics is reproduced, that lies within 1% of the exact solution
well beyond times t > 10.

From the discussion above, the transverse method,
combined with the folding technique, represents a very
promising tool for the dynamical studies of one-
dimensional systems. The first results show the applica-
bility of the method even to nonintegrable systems,
allowing the simulation of longer evolution times than
any other technique, and a qualitative description of the
dynamics until even later. This opens the door for the
study of physical problems not accessible until now for
numerical methods, including the dynamics of phase tran-
sitions, out-of-equilibrium states, and thermalization prob-
lems. The present formalism might also prove very
valuable in the context of extracting spectral information
for quantum impurity problems, the central problem in
dynamical mean field theory. The big advantage of our
method is that we can deal with real frequencies, and no
analytic continuation from imaginary frequencies is
needed as in the case of Monte Carlo simulations. In
contrast, the main limitation would be its exclusive appli-
cability to one-dimensional systems. Finally, although the
method has been described for infinite chains, it is easy to
adapt the technique for the dynamical study of finite
systems.
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Note added.—An independent derivation in [29], in the
context of concatenated tensor network states, led to a

similar network to describe time-evolved states.
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