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We study the scaling properties of critical particle systems confined by a potential. Using

renormalization-group arguments, we show that their critical behavior can be cast in the form of a

trap-size scaling, resembling finite-size scaling theory, with a nontrivial trap critical exponent �, which

describes how the correlation length � scales with the trap size l, i.e., �� l� at Tc. � depends on the

universality class of the transition, the power law of the confining potential, and on the way it is coupled to

the critical modes. We present numerical results for two-dimensional lattice gas (Ising) models with

various types of harmonic traps, which support the trap-size scaling scenario.
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Recent experimental developments, namely the achieve-
ment of Bose-Einstein condensation in dilute atomic va-
pors of 87Rb and 23Na [1,2], have attracted great interest in
the study of atomic systems in a trapping potential. In the
Bose-Einstein condensation scenario, a macroscopic num-
ber of trapped bosonic atoms accumulate in a single quan-
tum state and can be described by a condensate wave
function, which naturally provides the order parameter of
the phase transition. The critical behavior of a trapped
Bose gas has been recently investigated experimentally
[3], observing an increasing correlation length compatible
with the behavior expected at a continuous transition in the
three-dimensional XY universality class, see, e.g., Ref. [4]
and references therein, which is also the universality class
of the superfluid transition in 4He; see, e.g., Ref. [5].
However, the inhomogeneity due to the trapping potential
strongly affects the phenomenology of phase transitions
observed in the absence of a trap. For example, correlation
functions of the critical modes are not expected to develop
a diverging length scale in a trap. Therefore, a theoretical
description of the critical correlations in systems subject to
confining potentials, and of how they unfold approaching
the transition point, is of great importance for experimental
investigations of the critical behavior of systems of trapped
interacting particles.

We consider a trapping potential

UðrÞ ¼ vpj~rjp � ðj ~rj=lÞp; (1)

where v and p are positive constants and l ¼ v�1 is the
trap size, coupled to the particle number. Harmonic poten-
tials, i.e., p ¼ 2, are usually realized in experiments. The
effect of the trapping potential is to effectively vary the
local value of the chemical potential, so that the particles
cannot run away. Let us consider the case in which the
system parameters, such as temperature, pressure, and
chemical potential, are tuned to values corresponding to
the critical regime of the unconfined system, where the
correlation length diverges as �� t�� and the correlation
function behaves as GðrÞ � 1=rd�2þ� at Tc (t � T=Tc � 1

is the reduced temperature and � and � are the critical
exponents of the universality class of the transition). In the
presence of a confining potential, the critical behavior of
the unconfined homogeneous system could be observed
around the middle of the trap only in a window where � is
much smaller than the trap size but sufficiently large to
show the universal scaling behavior. If � is large but not
much smaller than the trap size, the critical behavior gets
somehow distorted by the trap, although it may give rise to
universal effects controlled by the universality class of the
phase transition of the unconfined system, similarly to
finite-size scaling in homogeneous systems of finite size
[6,7]. In this Letter we investigate the critical behavior of
trapped systems, putting on a quantitative ground the above
qualitative scenario, and, in particular, the relevant effects
of the confining potential. Using renormalization-group
(RG) arguments, we show that the critical behavior of the
trapped system can be cast in the form of a critical trap-size
scaling, resembling standard finite-size scaling theory for
homogeneous systems at a continuous transition [6,7], but
characterized by a further nontrivial trap critical exponent.
For the sake of demonstration, as a simple model of

trapped particles, one may consider the d-dimensional
lattice gas model defined by the Hamiltonian

H latt gas ¼ �4J
X

hiji
�i�j ��

X

i

�i þ
X

i

2UðriÞ�i; (2)

where the first sum runs over the nearest-neighbor sites of
the lattice, �i ¼ 0; 1 depending on whether the site is
empty or occupied by the particles, � is the chemical
potential, and UðrÞ is the potential (1). Far from the origin
the potential diverges; thus, the expectation value of the
particle number tends to vanish, and therefore the particles
are trapped. The lattice gas model (2) can be exactly
mapped to a standard Ising model, by replacing si ¼ 1�
2�i, thus si ¼ �1, obtaining

H ¼ �J
X

hiji
sisj þ h

X

i

si �
X

i

UðriÞsi; (3)
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where h ¼ 2qJ þ�=2 (q is the lattice coordination num-
ber). In the absence of the trap, this model shows a critical
behavior characterized by a diverging length scale, at the
critical point T ¼ Tc and h ¼ hc ¼ 0. Critical correlations
do not develop a diverging length scale in the presence of
the confining potential, i.e., at fixed v > 0. We want to
study how the critical behavior is distorted by the trap, and
how it is recovered in the limit v ! 0.

Our starting point is a scaling ansatz which extends the
scaling law of the RG theory of critical phenomena [8] (see
also Refs. [4,9]), to allow for the confining potential (1).
We consider a standard general scenario in which the
transition of the unconfined d-dimensional system is char-
acterized by two relevant parameters, t � T=Tc � 1 and h,
as in models (2) and (3). We write the scaling law of the
singular part of the free energy density as

Fðut; uh; uvÞ ¼ b�dFðutbyt ; uhbyh ; uvbyvÞ; (4)

where b is any positive number, ut;h;v are scaling fields

associated with t, h, and v, respectively. They are analytic
functions of the system parameters, behaving as ut � t,
uh � h, and uv � v when t; h; v ! 0. yt;h;v are the corre-

sponding RG dimensions: yt ¼ 1=� and yh ¼ ðdþ 2�
�Þ=2, while yv must be determined (see below). We are
neglecting irrelevant scaling fields, because they do not
affect the asymptotic behaviors. Then, fixing uvb

yv ¼ 1
and introducing the trap size l ¼ v�1, we obtain

F ¼ l��dF ðutl�yt ; uhl�yhÞ; (5)

where � � 1=yv is the trap exponent. From Eq. (5) one can
derive the trap-size scaling of other observables. A generic
quantity S is expected to behave asymptotically, when
jtj ! 0 and in the large-l limit, as

S ¼ l��ysfsðtl�=�Þ ¼ l��ys �fsð�l��Þ; (6)

where ys is its RG dimension, fs and �fs are universal
functions (apart from normalizations). � is a length scale,
which behaves as �� l� at Tc, and as �� t�� when l !
1. �fsðxÞ � x�ys for x ! 0, so that S� ��ys when l ! 1,
which is the scaling behavior in the absence of the trap.
These results are quite general; they apply to the lattice gas
model (2), as well as to more general interacting gas
systems, fluids, etc. Similar scaling arguments for inhomo-
geneous critical systems were also reported in Ref. [10].

The trap exponent � can be computed by analyzing the
RG properties of the corresponding perturbation at the
critical point. In the case of the model (2), it can be
represented by PU ¼ R

ddxUðxÞ�ðxÞ, where �ðxÞ is the
order-parameter field of the �4 theory which describes the
behavior of the critical modes; see, e.g., Ref. [9]. Since the
RG dimensions of the potential UðxÞ and the field �,
respectively yU ¼ pyv � p and y� ¼ �=� ¼ ðd� 2þ
�Þ=2, are related by yU þ y� ¼ d, we obtain

� ¼ 1

yv
¼ 2p

dþ 2� �þ 2p
: (7)

Notice that � ! 1 when p ! 1, which is consistent with
the fact that when p ! 1 the effect of the trapping poten-
tial is equivalent to confining a homogeneous system in a
box of size L ¼ l with fixed boundary conditions, thus
leading to a standard finite-size scaling where the RG
dimension of the size L is formally �1 [6,7].
As examples of observables in model (3), we consider

the local magnetization and the energy density in the
middle of the trap, i.e.,

M0 � hs0i; E0 ¼ hs0s1i (8)

(where 1 is a nearest neighbor of the center site 0), and the
correlation function

G0ðrÞ � hs0sri � hs0ihsri: (9)

In the lattice gas model M0 and G0ðrÞ are related to the
particle density and its correlations. Their asymptotic trap-
size scaling behaviors are given by

M0 ¼ l��y�fmðtl�=�Þ ¼ l��y� �fmð�l��Þ; (10)

G0 ¼ l�2�y�fgðtl�=�; rl��Þ ¼ l�2�y� �fgð�l��; r=�Þ; (11)

E0 ¼ EnsðtÞ þ l��ðd�1=�Þfeðtl�=�Þ; (12)

where y� ¼ ðd� 2þ �Þ=2 and EnsðtÞ is a nonsingular

function. The scaling behavior at Tc can be obtained
from the above equations by setting t ¼ 0,

M0 � l��y�; E0 � Ec � l��ðd�1=�Þ; (13)

G0ðrÞ � l�2�y�gðrl��Þ: (14)

In order to check the trap-size scaling scenario, we
consider the square-lattice Ising model (3) with J ¼ 1
(for which we know the critical temperature and energy,

i.e., Tc ¼ 2= lnð ffiffiffi
2

p þ 1Þ and Ec ¼
ffiffiffi
2

p
, and the critical

exponents, � ¼ 1, � ¼ 1=4) in a harmonic trap, i.e., the
potential (1) with p ¼ 2. According to Eq. (7), the corre-
sponding trap exponent is � ¼ 16=31. In addition to two-
dimensional (2D) traps, we also consider one-dimensional
(1D) traps, where the confining potential acts only along
one direction, i.e.,UðrÞ ¼ vpjxjp depends only on x, while
there is translation invariance along the other y direction.
Note that the trap-size scaling formulas, including the
value of the trap exponent �, apply to both 2D and 1D
traps.
We performed several Monte Carlo (MC) simulations

around the critical point and for various values of the trap
size l. The lattice size L and harmonic potential of the
simulated systems were chosen to have the spin variables

PRL 102, 240601 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
19 JUNE 2009

240601-2



effectively frozen at the boundary, making unnecessary the
use of larger lattices [11]. The MC results forM0 and E0 at
Tc provide accurate checks of the trap-size scaling pre-
dicted by Eq. (13). In both 1D and 2D harmonic traps,
�M0 � l2=31M0 and �E � l�ðE0 � EcÞ for the available
lattice sizes L ¼ 8; 16; 32; 64; 128; 256 fit perfectly the
function cþ c1=l, where l�1 is the order of the expected
leading corrections to their asymptotic scaling [12] (in all
cases with 	2=d:o:f: & 1) [13]. In Fig. 1 we check the
scaling of M0 around Tc in the case of the 2D trap, by

plotting �M0 � l2=31M0 vs tl
16=31. As predicted by Eq. (10),

the data approach a scaling function fmðtl16=31Þ in the
large-l limit, where scaling corrections are suppressed.
Figure 2 shows results for the correlation function (9) in
the case of the 2D trap, at Tc. They clearly support Eq. (14),

indeed the data of �G0ðrÞ � l4=31G0ðrÞ follow the same

scaling function gðrl�16=31Þ for all trap sizes (scaling cor-

rections are very small and not visible in Fig. 2). G0ðrÞ
appears to decay rapidly at large distance, with a length
scale behaving as �� l�.
To further check the trap-size scaling scenario, we also

consider another Ising-like model with the confining po-
tential (1) coupled to the energy density, i.e.,

H e ¼ �J
X

hiji
½1þUðrijÞ�sisj þ h

X

i

si; (15)

where the first sum runs over nearest-neighbor sites,
and rij � ðri þ rjÞ=2. Also in this case the spin vari-

ables get frozen at large distances. More precisely,
limh!0þ limjrj!1hsri ¼ 1 at any T, corresponding to van-

ishing particle density in the lattice gas model. The effects
of the confining potential at the transition can be again
described by a trap-size scaling, cf. Eqs. (10)–(14), but
with a different trap exponent �. Indeed, a RG analysis of
the perturbation arising from the potentialU in model (15),
QU ¼ R

ddxUðxÞ�2ðxÞ, gives [14]

� ¼ p�

1þ p�
: (16)

We again consider a square-lattice model with a harmonic
2D trap. Since � ¼ 1, Eq. (16) gives � ¼ 2=3, which
differs from the value 16=31 for the model (3). We per-
formed MC simulations similarly to the previous case.
Results for the trap-size scaling of the magnetization M0

at the origin, and the correlation function (9), are shown in
Figs. 3 and 4. They again fully support the predicted trap-
size scaling behaviors.
In conclusion, we have shown that the critical behavior

of systems in a confining potential can be described by a
universal trap-size scaling (expected to be largely indepen-
dent of the microscopic details of the model), characterized
by a trap exponent � which describes how the correlation
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FIG. 1 (color online). Trap-size scaling ofM0 for the model (2)
in a 2D trap. �M0 � l2=31M0 and L ¼ ffiffiffi
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FIG. 2 (color online). Scaling at Tc of G0ðrÞ for the model (2)
in a 2D trap. �G0ðxÞ � l4=31G0ðxÞ and L ¼ ffiffiffi
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FIG. 3 (color online). Trap-size scaling of M0 for the model

(15) in a 2D trap. �M0 � l1=12M0 and L ¼ ffiffiffiffiffiffiffiffi
2=3

p
l (which was

sufficiently large to have effectively frozen spins at the bounda-
ries).
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length scales with the trap size, �� l� at Tc. The expo-
nent � essentially depends on the universality class of the
transition, the power law of the confining potential, and on
the way it is coupled to the critical modes. These results are
very general, and by no means limited to two dimensions.

We finally discuss the critical behavior of a 3d interact-
ing Bose gas trapped by a harmonic potential, which has
been recently investigated experimentally [3]. This system
is expected to undergo a continuous transition in the 3d XY
universality class, characterized by a complex order pa-
rameter �ðxÞ with Uð1Þ symmetry. The confining potential
UðxÞ is coupled to the particle density. The corresponding
perturbation is [15] QU ¼ R

d3xðjxj=lÞ2j�ðxÞj2, where

�ðxÞ is the order-parameter field. The same RG arguments
which led us to Eq. (16) give � ¼ 2�=ð1þ 2�Þ, thus � ¼
0:573 27ð4Þ using [16] � ¼ 0:6717ð1Þ. This implies that
one can neglect the trap effects only when the correlation
length satisfies � � l� ¼ l0:573. The experimental results
of Ref. [3] were likely taken in this region, and led to the
estimate � ¼ 0:67ð13Þ, by fitting the data to the standard
behavior �� t��. For larger values of �, when � and l�

become comparable, the trap-size scaling discussed in this
Letter is expected to provide the correct critical behavior.
We believe that experiments probing the trap-scaling re-
gime can be very interesting, analogously to experiments
probing finite-size scaling behavior in 4He at the superfluid
transition [17]. Moreover, accurate studies of the critical
properties of trapped systems, to check universality and
determine the critical exponents, require a robust control of
the effects of the confining potential. In this respect, one
may actually exploit trap-size scaling, using it to infer the
critical exponents from the data, analogously to finite-size

scaling techniques for the accurate determination of the
critical parameters; see, e.g., Ref. [4].
Helpful discussions with E. Arimondo, P. Calabrese, and
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