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We present an efficient method for producing N particle entangled states using Rydberg blockade

interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a

second control state is used to achieve state dependent qubit rotations in small ensembles. On the basis of

quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be

produced with a fidelity of 84% in cold Rb atoms.
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Entanglement lies at the heart of quantum information
processing and is also a valuable resource for extending
precision measurements beyond bounds set by classical
statistics. Recent years have seen a steady progression
towards entanglement of larger and larger objects.
Although macroscopic ensembles have been successfully
entangled [1], the entanglement achieved per atom was
very low. Maximally entangled states of six atoms, as well
as ‘‘W’’ states of eight atoms, have been achieved in
groundbreaking experiments with cold ions [2,3]. In this
Letter, we introduce an efficient technique for generating
maximally entangled states which is applicable to any
system which supports asymmetric state dependent block-
ade interactions. We give quantitative estimates for the
preparation fidelity for entanglement of the clock states
of Rb atoms using Rydberg blockade, which may enable
improvement in the accuracy of an atomic clock.

Consider the situation shown in Fig. 1 where N atomic
qubits, each with basis states j0i, j1i, are confined in a
volume V. We assume states j0i, j1i are weakly interacting
over time scales of interest but can be transferred to addi-
tional interacting states jsi, jpi. Single particle excitations
of jsi are allowed, but there is a large energy gap Uss ¼
@�ss which blocks two-particle excitations. States jsi, jpi
are also strongly interacting with a large gap Usp ¼ @�sp;

however, states jpi interact weakly with each other so that
the two-particle interaction energy Upp ¼ @�pp satisfies

�pp � �sp, �ss.

With the above resources, N atom entangled states can
be synthesized in a few interaction steps by the following
protocol. We first prepare the N atom product state jc i ¼
j0; 0; . . . ; 0i. The ground state j0i is coupled to jsi with an
interaction Hamiltonian H 1 such that the Rabi frequency
(from now on, we put @ ¼ 1), given by�s=2 ¼ hsjH 1j0i,
satisfies j�sj � �ss. In step (i), we applyH 1 to all atoms

for a time t1 ¼ �=ð2 ffiffiffiffi
N

p j�sjÞ to create the entangled state

jc i ¼ 1ffiffiffi
2

p
�
1ffiffiffiffi
N

p XN
j¼1

j0; 0; sðjÞ; . . . ; 0i þ j0; 0; . . . ; 0i
�
: (1)

We then invoke a second interaction Hamiltonian H 2 ¼
H 20 þH 21 with corresponding Rabi frequencies
�p0=2 ¼ hpjH 20j0i, �p1=2 ¼ hpjH 21j1i, and the same

detuning �0 on both transitions, see Fig. 1. For simplicity,
we will assume �p0¼�p1¼�p¼j�pj. After a definite

interaction time of t2 ¼
ffiffiffi
2

p
�=�p in the resonant (�0 ¼ 0)

case, and t2 ¼ 2��0=�
2
p in the nonresonant (�0 � �p)

case,H 2 induces a transfer from j0i to j1i in all the atoms
via the Rydberg state jpi, unless this process is blocked by
population in the Rydberg jsi state. In the limit where
�pp � � � �sp, step (ii) transforms (1) into

jc i ¼ 1ffiffiffi
2

p
�
1ffiffiffiffi
N

p XN
j¼1

j0; 0; sðjÞ; . . . ; 0i þ j1; 1; . . . ; 1i
�
: (2)

We finish in step (iii) by applying �H 1 for a time 2t1 to
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FIG. 1 (color online). Level scheme (left) and sequence of
operations for entangled state generation (right). � is the effec-
tive Rabi frequency coupling states j0i, j1i.
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reverse the first excitation step, giving

jc i ¼ 1ffiffiffi
2

p ðj0; 0; . . . ; 0i þ j1; 1; . . . ; 1iÞ (3)

which is a N atom maximally entangled state. We see that,
independent of N, only three preparation steps are needed.
We show below that the requirement of strong and state
dependent asymmetric couplings may be satisfied by
dipole-dipole interactions of Rydberg atoms [4,5].
Rydberg blockade effects have now been observed in a
number of experiments in both many-body [6] and single
atom [7] settings. The Rydberg blockade has been sug-
gested previously as a route to multiparticle entanglement
[8,9], and recent work from Müller et al. [10] is based on
ideas closely related to those presented here. There are,
however, significant differences including our use of block-
ade in step (i) of the above protocol which removes the
need for separately addressing a control atom. This allows
all atoms to reside in one ensemble which provides a better
geometrical scaling of the interactions.

The fidelity with which state (3) can be prepared in an
experiment depends on the strength of the blockade inter-
actions and the degree to which the couplings are asym-
metric. We proceed by estimating the effective Rydberg
interaction strengths �sp, �pp. The interaction between

atoms in the ‘‘control’’ state jsi and the ‘‘target’’ state jpi is
of resonant dipole nature between two-atom states jspi,
jpsi. The interaction between classical dipoles is aniso-
tropic and has a zero when the angle between the dipoles is

� ¼ cos�1ð1= ffiffiffi
3

p Þ. This anisotropy would lead to unaccept-
able errors in the present setting. However, for small
external fields the atomic Zeeman states are degenerate
and the interaction couples states with different ms, mp

quantum numbers. This leads to a finite interaction strength
�sp at all angles. It can be shown that the behavior corre-

sponding to interaction of classical dipoles with angular
zeroes is recovered by applying a large magnetic field that
selects a single pair of Zeeman states. The resonant inter-
action has a 1=R3 scaling, so we can write �spðRÞ ¼
�spðdÞðd=RÞ3 where d is a characteristic length scale that

we will set equal to the smallest interatomic separation d.
The target-target interaction�pp is due to a Förster process

[11]. We will choose states and values of d such that we are
working in the van derWaals limit of this interaction which
gives the distance scaling �ppðRÞ ¼ �ppðdÞðd=RÞ6. The
energy shift of each atom is thus dominated by its nearest
neighbors in the ensemble.

Since �sp � 1=R3 and �pp � 1=R6, the condition of

strongly asymmetric Rydberg interactions can be readily
met by choosing R sufficiently large. The asymmetry is
maximized for small n since the resonant dipole allowed
interaction between jsi, jpi scales as �sp � n4 while the

second order Förster process leading to �pp scales as

�pp � n11. The lower limit on n is set by the blackbody

limited spontaneous emission lifetime �p � n2.

We have searched for parameters in the small n regime
that minimize the error in creation of state (3) by perform-
ing extensive numerical studies of the interaction between
different Rydberg states in Rb drawing on the exposi-
tion of the dominant Förster channels given in [12]. As
shown in Fig. 2, we find large interaction asymmetries of
�sp=�pp > 150 for all angles. In addition to the multi-

particle entanglement, this large asymmetry will also fa-
cilitate implementation of a three-bit Toffoli gate [13]
We consider an implementation with a cubic lattice of

spacing d occupied by one atom per site inside a sphere of
radius R0. A protocol for preparing a lattice with this type
of spatially localized occupation was described by us
recently in Ref. [14]. The angle dependent peaks in �pp

are not of particular concern since the cubic lattice can be
oriented to avoid the corresponding angles. For simplicity,
we have characterized the angle averaged interactions by
��spðdÞ ¼

R�=2
0 d��spðd; �Þ sinð�Þ and similarly for ��pp.

Performing the integrations, we find ð ��sp; ��ppÞ=2� ¼
ð14:4; 0:019Þ MHz.
In order for step (i) of the entanglement protocol to be

effective, it is also necessary that the jns ¼ 41; s1=2i states
exert a strong blockade over the entire sphere of radius R0.
At d ¼ 3 �m, we find �ssðdÞ ¼ 3:7 MHz and the interac-
tion is essentially isotropic [12]. This is larger than �pp,

but the interaction strength decreases as 1=R6 and is in-
sufficient for strong blockade over a sphere with R0 > d.
We note that this difficulty can be readily solved as follows.
The first Rydberg excitation step (i) is made to a level js0i
that has a large value of n and provides strong blockade
over the entire ensemble. The level js0i is then transferred
to jsi using a two-photon transition which prepares the
state of Eq. (1) even though �ss may be small. The addi-
tional transfer steps are then run backwards in step (iii).
The possibility of performing these additional steps allows
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FIG. 2 (color online). Calculated blockade shifts as a function
of the angle of the molecular axis for 87Rb, jsi ¼ j41s1=2; m ¼
1=2i, jpi ¼ j40p3=2; m ¼ 1=2i with magnetic field B ¼ 10�7 T

at d ¼ 3 �m. The interaction �pp includes contributions from

the indicated Förster channels.
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us to ignore the small errors associated with blockade of
the control state.

To examine the fidelity of our scheme, it is instructive to
recall how the errors scale for a two-atom Rydberg block-
ade phase gate. A phase gate between a control atom (c)
and target atom (t) involves the steps [4]: (i)� pulse j1ic !
ijric, (ii) 2� pulse j1it ! ijrit ! �j1it, (iii) � pulse
ijric ! �j1ic. Assuming ground to Rydberg state oscilla-
tions can be driven with high accuracy, as has been dem-
onstrated in recent experiments [15], the dominant errors
come from imperfect blockade in step (ii) with error Ebl �
�2=�2 (� is the dipole-dipole interaction shift) and spon-
taneous emission of the control atom with error Ese �
1=�� where � is the Rydberg state spontaneous lifetime.

The sum of the two errors is minimized for���2=3=�1=3

which leads to a gate error that scales as [16] E ¼ Ebl þ
Ese � 1=ð��Þ2=3.

Similar error estimates apply to the above entanglement
protocol, but in addition to the imperfect blockade and the
atomic spontaneous decay, we must also take into account
the undesired interaction between atoms in the Rydberg jpi
transfer states. The variation in this interaction comes, on
the one hand, from considering atoms with all nearest
neighbors present relative to atoms at the edge of the

ensemble with fewer neighbors and, on the other hand,
from the quantum mechanical spreading of the occupan-
cies of the Rydberg state jpi in the time evolving many-
atom superposition states.
Returning to Fig. 1, we expect process (ii) to be fast and

most sensitive to the blocking interacting �sp, but also

most sensitive to the �pp shifts, when �0 ¼ 0. We will

treat the spontaneous decay and the imperfect blocking due
to finite �sp as independent errors on each atom. The

spontaneous emission error during the transfer between
j0i and j1i via jpi is readily determined from the average

population of the Rydberg state to be Ese ¼
ffiffi
2

p
�

4�p�p
. The

states j0i and j1i, coherently coupled to jpiwith equal Rabi
frequencies �p, can be alternatively treated in the basis of

the uncoupled, ‘‘dark’’ state jdi ¼ ðj0i � j1iÞ= ffiffiffi
2

p
and the

coupled, ‘‘bright’’ state jbi ¼ ðj0i þ j1iÞ= ffiffiffi
2

p
with Rabi

frequency
ffiffiffi
2

p
�p. A 2� rotation on the jbi � jpi transition

yields a sign change on the bright state, equivalent to the
desired net � rotation between the j0i and j1i states. This
motivates the definition of � ¼ �p=

ffiffiffi
2

p
as an effective

Rabi frequency of the oscillation between j0i and j1i,
and in the limit of � � 1=�p the populations of states

j0i, j1i after the transfer pulse (ii) are P0 ¼ 1� P1,

P1¼½�02��2þ�2cosð��0=�Þ��02 cosð��=2�Þcosð��0=2�Þ���0 sinð��=2�Þsinð��0=2�Þ�=ð2�02Þ; (4)

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ�2

p
, and � is the interaction induced detun-

ing. The error due to imperfect blocking by the control
state jsi is found by inserting� ! �sp � � and this leads

to Ebl ’ �2

4 h�2

�2
sp
i, where we assume an average over atom

pairs in the ensemble.
Equation (4) also allows an estimate of the transfer error

on each atom scaling as Etr / �2
ppðdÞ
�2 due to the �pp inter-

action terms, when the transfer is not blocked, but we will
evaluate this error taking into account the full many-atom
correlations in the quantum state. Our task is to determine
the effect of the interaction:

V ¼ X
i;j>i

�ij
ppðjpiihpijÞ � ðjpjihpjjÞ; (5)

where jpiihpij is the projection operator of the ith atom on

the Rydberg state jpi, and �ij
pp is the interaction energy for

a given (ij) pair of Rydberg excited atoms, depending on
their spatial separation. We will determine the effect of this
interaction by first order perturbation theory, in the inter-
action picture with respect to the ideal gate operation due
to the Hamiltonian H 2 transferring the atoms between
state j0i and j1i. That Hamiltonian is readily diagonalized
for each atom, H 2i ¼

P
m!mjmiihmij, where both the

energies !m and the states jmii of the ith atom are analyti-
cally known (and the same for all atoms), and the corre-
sponding ideal time evolution operator U2ðtÞ of the entire
atomic ensemble is thus also known. The time evolution in
the interaction picture, due to the Rydberg interaction, is
given to first order by the expression

UIðtÞ ¼ I � i
X
i;j>i

�ij
pp

X
mi;mj

X
m0

i;m
0
j

cmi
cmj

c�m0
i
c�m0

j

e
{ð!mi

þ!mj
�!m0

i
�!m0

j
Þt � 1

ið!mi
þ!mj

�!m0
i
�!m0

j
Þ ðjmiihm0

ijÞ � ðjmjihm0
jjÞ �

O
k�ði;jÞ

Ik; (6)

where cmi
¼ hmijpii comes from the expansion of the

Rydberg states on the eigenstates of H 2i.

The perturbation leads to an erroneous change of the
state in the interaction picture, and one readily observes
that the squared norm of the erroneous component has the

expected
�2

pp

�2 scaling. We have evaluated (6) by summing

over all atom pairs and assuming the initial state with all

atoms in state j0i, and we find for different atom numbers

the transfer error Etr;N ¼ �N � �2
ppðdÞ
�2 . We have carried out

calculations with a pair of atoms, separated by the distance
d, four atoms located at the corners of a square with side
length d, and 8 atoms located at the corners of a cube with
side length d. With the R�6 scaling of the interaction with

distance, we find ð�ð6Þ
2 ; �ð6Þ

4 ; �ð6Þ
8 Þ ¼ ð0:299; 0:72; 9:39Þ,
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while for a distance independent coupling,

ð�ð0Þ
2 ; �ð0Þ

4 ; �ð0Þ
8 Þ ¼ ð0:299; 3:82; 36:8Þ. The accuracy of the

perturbation theory results has been verified by direct
numerical solution of the N atom Schrödinger equation
for N 	 6.

The approximate cubic growth of the transfer error with
the number of atoms qualitatively agrees with an error
amplitude on each atom scaling linearly with the number
of perturbing atoms. For larger ensembles, distant neigh-
bors do not contribute to the error, and we expect a tran-
sition to a linear dependence with N.

Adding together our error contributions, we find the total
error on the N-atom state,

EN ¼ N

�
�

4

1

��p
þ �2

4

�
�2

�2
sp

��
þ �ð6Þ

N

�2
ppðdÞ
�2

: (7)

As can be seen in Fig. 3, the contributions to the error
depend in different ways on the Rabi frequency. We find
for the case ofN ¼ 8 atoms a minimum error of E8 ¼ 0:16
at �=2� ¼ 0:30 MHz. The 8 atom maximally entangled
state can thus be prepared with a fidelity of �0:84.

We have also performed the calculation assuming �0 �
�ppðdÞ. The � pulse in transfer step (ii) leading to the state

of Eq. (2) gives in this case a spontaneous emission error
per atom of Ese ¼ �

2
1

�0�p
. In the limit of � � �0, the

population of the states j0i, j1i after the transfer pulse are
P0 ¼ cos2ð�t2=2Þ, P1 ¼ sin2ð�t2=2Þ with � ¼
�2

p=2ð�0 þ�spÞ when the jsi state is supposed to block

the transition. The blockade error in the target state proba-

bility for each atom is then determined as Ebl ¼ �2

4 h�2
0

�2
sp
i.

When the transition is not blocked, we shall use our
perturbative expression (6), which in the nonresonant

case yields an expression of the form Etr;N ¼ �N
�2

ppðdÞ
�2

0

.

With the same arrangement of 4 and 8 atoms as above, we

find with the R�6 interaction, ð�ð6Þ
4 ; �ð6Þ

8 Þ ¼ ð15:6; 113Þ,
while for a distance independent coupling, ð�ð0Þ

4 ; �ð0Þ
8 Þ ¼

ð53:7; 308Þ. In this case, the errors add to

EN ¼ N

�
�

2

1

�0�p
þ �2

4

�
�2

0

�2
sp

��
þ �ð6Þ

N

�2
ppðdÞ
�2

0

: (8)

As the �N coefficients are substantially larger than the
corresponding �N , the nonresonant transfer case has a
lower fidelity than for the resonant case.
In summary, we have presented a technique for prepar-

ing multiatom maximally entangled states using a three
step sequence. A detailed analysis of asymmetric Rydberg
interactions in Rb atoms shows that 8 atom entangled
superposition states can be prepared with reasonably high
fidelity. Similar results, not presented here, have been
found for the case of Cs. Straightforward modifications
to these ideas can be used for two-atom CNOT gates that do
not require single qubit rotations [17], and in other physical
settings where blockade interactions are available such as
Coulomb or Pauli blockade of quantum dots [18], or mo-
lecular interactions with superconducting qubits [19].
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FIG. 3 (color online). Error of the N ¼ 8 entangled state
calculated from Eq. (7) using the parameters of Fig. 2, and �p ¼
57 �s for np ¼ 40.
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