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A simple effective medium theory is derived for spatially heterogeneous nonlinear reaction-diffusion

media. Its validity is tested through comparisons with simulations of front and pulse propagation in

systems with spatially varying diffusion coefficients and reaction rates. The theory is able to predict wave

speeds if the characteristic front width is much larger than the length scale of the heterogeneities. This

condition is violated in media with isolated or weakly connected sites. However, the theory nevertheless

provides good results in cases where it correctly predicts the percolation threshold of the medium.
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Spatial structures often occur in chemical [1] and bio-
logical [2] systems and determine many of their properties.
Reaction-diffusion (RD) models for such pattern formation
usually assume that the system is spatially homogeneous,
but experiments on the Belousov-Zhabotinsky reaction
(BZR) [3,4], catalysis [5], and cardiac tissue [6,7] have
shown that spatial heterogeneity can strongly affect spatial
structure and dynamics. For example, BZR experiments on
microemulsions have demonstrated that the structural
composition of the emulsion can be varied to tune the
concentration patterns in this system [8]. Heterogeneities
are intrinsic in biological systems, and spatially heteroge-
neous RD equations have been employed to model pro-
cesses such as intracellular calcium waves [9] and
electrical propagation in the heart [10]. A large number
of studies, however, assume homogeneous RD equations to
model biological and chemical systems, but a general and
simple framework to relate both types of approaches is still
missing.

Frequently, heterogeneities may be distributed in a com-
plicated or even random manner specific to a particular
system. For instance, each piece of excitable cardiac tissue
has a different heterogeneous distribution of excitable cells
with different properties. Rather than relying on models
that assume a specific set of inhomogeneities, it is far better
to construct models that incorporate only generic features
of the heterogeneity. If the spatial scale of the heterogene-
ity is much smaller than the scale of the RD pattern, a
description based on RD equations for an effective homo-
geneous medium should be able to describe the main
pattern features. In this spirit, homogenization procedures
based on explicit analytical [11,12] or implicit numerical
[13] averaging methods have been employed to obtain
wave properties in (mostly periodic) one-dimensional het-
erogeneous RD media. In two and three dimensions, ho-
mogenization results were obtained for selected important
biophysical problems such as propagation in cardiac tissue
[14] and calcium dynamics in cardiac myocytes [15].

These results depend on specific details of the model.
Here we present a simple method to obtain effective pa-
rameters for random heterogeneous RD systems and test its
validity and limitations by direct simulations in various
heterogeneous model systems.
Since pattern formation relies on the interplay between

nonlinear kinetics and diffusion, we extend effective me-
dium theories for linear kinetics [16] to obtain effective
reaction rates and diffusion coefficients for nonlinear RD
systems. To test the effective medium theory, pattern dy-
namics in models of two-dimensional random binary bi-
stable and excitable media with small-scale heterogeneities
in diffusion and reaction were studied. In random binary
media, the diffusion coefficient depends on space and takes
only two different values: D2 < 1 with a probability� and
D1 ¼ 1 with probability 1��. Simulations are in excel-
lent agreement with the analytical predictions of effective
medium theory provided the characteristic pattern length is
larger than the length scale of the heterogeneity (homoge-
nization condition), i.e., when D2 has a sufficiently large
value. In the limiting case D2 ! 0, our random media
consist of a conducting phase 1 and an isolating phase 2.
Macroscopic transport and waves are observed only if the
fraction of phase 1 is large enough for percolation.
Although the homogenization condition is violated for
D2 ! 0, the effective medium theory predicts correctly
the dynamics if it reproduces the percolation threshold
correctly. The results of this study provide a basis and
criteria for the construction of effective models for hetero-
geneous media.
We consider a heterogeneous medium composed of a

random distribution of two types of domains, where chemi-
cal species react and diffuse. Particles can diffuse through-
out the system, but their diffusion coefficients and reaction
rates may differ in the different domains and have the
values D1, R1 and D2, R2 in type-1 and type-2 domains,
respectively. The dynamics in the heterogeneous medium
is described by the RD equation
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@tcðr; tÞ ¼ r � ½DðrÞrcðr; tÞ� þ Rðcðr; tÞ; rÞ; (1)

where c and R are vectors of the concentrations and
reaction rate fields for a multicomponent system. The
spatially dependent terms are defined so that DðrÞ ¼ Di,
Rðcðr; tÞ; rÞ ¼ Riðcðr; tÞÞ in domain types i ¼ 1; 2.

If the characteristic domain size ‘het is small compared
to the characteristic pattern scale ‘p, one may describe the

RD dynamics in terms of effective medium equations
obtained by coarse-graining over distances that are large
compared to ‘het. Letting the angular bracket h. . .i repre-
sent such a coarse-graining, we may replace the averaged
equation

@thcðr; tÞi ¼ hr � ½DðrÞrcðr; tÞ�i þ hRðcðr; tÞ; rÞi (2)

by an effective medium RD equation

@thcðr; tÞi ¼ Der2hcðr; tÞi þ Re½hcðr; tÞi�; (3)

with an effective diffusion coefficient De and an effective
reaction rate Re½hcðr; tÞi�. Given a random distribution of
the two phases and a volume fraction �, the effective
diffusion coefficient is given by an implicit relation [16]
that depends on D1, D2, and �:

ð1��Þ D1 �De

D1 þ ðd� 1ÞDe

þ�
D2 �De

D2 þ ðd� 1ÞDe

¼ 0; (4)

where d is the spatial dimension of the system. Equivalent
results for the diffusion coefficient exist for the conductiv-
ity of mixtures of isotropic materials [17], for spherical
inclusions in a conducting material [18], and for inhomo-
geneous transport in resistor networks [19]. Equation (4)
predicts a percolation threshold of �� ¼ 1=2 in d ¼ 2
because the effective diffusion coefficient for D2 ¼ 0 is
De ¼ D1ð1� 2�Þ.

A simple expression for the effective nonlinear reaction
rate can be obtained if the characteristic domain size ‘het is
much smaller than the distance ‘D that particles diffuse in
the mean reaction time �R: ‘het=‘D � 1, where ‘2D ¼
De�R. In this case reactions will occur homogeneously
within the two phases, and spatial inhomogeneity arises
on scales longer than the average domain size. Under these
conditions we have

Re ¼ ð1��ÞR1½hcðr; tÞi� þ�R2½hcðr; tÞi�: (5)

We consider a one-component bistable medium with
reaction rate [20] Rðc; rÞ ¼ kðrÞcð1� cÞðc� aÞ and diffu-
sion coefficient DðrÞ. The spatially homogeneous system
supports a front that propagates with a stationary shape and
constant velocity:

V0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Dk=2

p
ð1� 2aÞ: (6)

The characteristic pattern scale ‘p is given by the interface

width ‘p ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffi
2D=k

p
. For our choice of parameters, ‘p ¼

0:8 for D ¼ 1. The heterogeneity scale is set to be ‘het ¼
0:1, so that the condition for homogenization ‘het � ‘p is

clearly violated, once D< 0:2. If we spatially discretize
the heterogeneous medium into a grid of points connected
by links, different cases can be studied. (i) A link between
two neighboring sites has either normal diffusion (D1) or a
reduced diffusion coefficient (D2) corresponding to a weak
link. The probability to find such weak links is �wl, and
there is no correlation between links. (ii) We consider the
system with weak links and introduce a probability �nr for
a site to be nonreactive (k2 ¼ 0). We assume that both
types of heterogeneities appear with the same probability
�nr ¼ �wl and that their locations are uncorrelated.
(iii) Defects in the system are studied. A defect is a site,
where all links have a reduced diffusion (D2). They appear
with a probability �d. (iv) Nonreactive (k2 ¼ 0) defects
can be also considered. We consider such heterogeneities
because cases (i) and (iii) lead for D2 ¼ 0 to bond and site
percolation, respectively. Cases (ii) and (iv) are extensions
of cases (i) and (iii) with heterogeneous reaction.
In the numerical simulations, a front was initiated on one

side of a 2D system and allowed to propagate through a
homogeneous medium until a stationary shape was
achieved. After the front entered an inhomogeneous re-
gion, the velocity of the front was measured. The wave
patterns are qualitatively similar for all cases. Figure 1
shows two examples for case (i). Figure 1(a) corresponds
to an intermediate fraction of type-2 domains. In Fig. 1(b),
the fraction of weak links is close to the percolation
threshold (��

wl ¼ 0:5).
We carried out a systematic study of the dependence of

the wave velocity on� andD2. The explicit dependence of
the effective diffusion coefficient on �wl (probability of
weak links) and D2 can be obtained from Eq. (4), and the
dependence of the effective reaction rate on �nr (probabil-
ity of nonreactive sites) from Eq. (5): ke ¼ ð1��nrÞk.
Using these results in Eq. (6), we can compare the simu-

FIG. 1 (color online). Front evolution in systems with weak
links (D2 ¼ 0) with densities (a) �wl ¼ 0:3 and (b) �wl ¼ 0:47.
Fronts (bright areas) evolve from top to bottom. Different levels
of darkness represent heterogeneities, which extend in 5 s:u: <
x < 35 s:u: (size 30� 40 s:u:2). Periodic boundary conditions in
the horizontal direction are applied.
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lation results with the predictions of the theory:

V ¼ V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Deke=Dk

q
: (7)

There are no qualitative differences between the behaviors
in 2D and 3D; thus, we present only results for 2D here.

For case (i) the reactivity of the medium is homogene-
ous. Figure 2(a) shows that the effective medium theory
is able to reproduce correctly the results of the simulations.
In addition, we consider the combination of weak links
with nonreactive sites [case (ii)]. For �nr close to 1, the
front does not propagate and the velocity goes to zero.
The simulation results [Fig. 2(b)] are well reproduced by
Eq. (7). Figure 2 shows that the effective medium theory
can be applied to the propagation of fronts through a
medium where the diffusivity of some links has been
reduced. There is no fitting parameter in the theory. The
theory can be applied for sufficient large D2. It works
even in the limit of D2 ¼ 0 if the theory correctly pre-
dicts the percolation threshold. The dependence of the

velocity is V ¼ V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d�wl=ðd� 1Þp

for case (i) and

V ¼ V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d�wl=ðd� 1Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��nr

p
for case (ii) [see

Fig. 3(a)]. We observe in Fig. 3 that the effective medium
theory can be applied for small values of �wl but fails for
values of �wl close to the percolation threshold. In this
case, larger clusters form and homogenization fails.

The percolation threshold is different for zero-diffusion
links and zero-diffusion defects corresponding to the cases
of bond and site percolation, respectively. The theory pre-
dicts a percolation threshold which is correct for bond per-
colation and allows quantitative comparisons [Fig. 3(a)].
However, the prediction in 2D of the percolation threshold
(�� ¼ 0:5) differs substantially from the site percolation
threshold (��

d ¼ 0:41). Using the modified formula V ¼
V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��=��

d

q
, we can reproduce the numerical results

[dashed line in Fig. 3(b)] for D2 ¼ 0 better than the origi-
nal theory [solid line in Fig. 3(b)].

While Eq. (4) applies to weak links, it is not suitable to
describe defects. In order to find an improved expression,
we transform the probability �d that a site is a defect to a

different probability�dl that a link belongs to a defect and,
therefore, is assigned a weaker diffusion coefficient. If �d

is the fraction of defects and 1��d the one of normal
nodes, the probability of a normal link would be ð1��dÞ2
and the probability of a weak link is �dl ¼ 2�d ��2

d. We

replace the probability �d by the new probability �dl in
Eq. (4) but keep �nr ¼ �d in the expression for ke for
case (iv). For comparison with simulations, see Fig. 4. The
modified effective medium theory is able to reproduce the
numerical results for large values of D2 but exhibits dis-
crepancies for small values ofD2 (Fig. 4), in particular, for
D2 ¼ 0 [dotted line in Fig. 3(b)], due to the incorrect
prediction of the percolation threshold.
In summary, the effective medium theory works for

large enough values of D2. While theory and simulation
agree for bond percolation, this is not the case for site
percolation. The introduction of a modified percolation
threshold describes 2D site percolation and the limitD2 !
0 well. However, the theory fails for defects. The intro-
duction of a new fraction �dl for the links leads to good
agreement for large and intermediate values of D2.
The addition of a second equation for an inhibitor [21]

leads to the production of pulses instead of fronts and may
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FIG. 2 (color online). Dependence of front velocity on D2 and
�wl: (a) weak links and (b) weak links and nonreactive sites
(�nr ¼ �wl). Points, average over 100 realizations; solid lines,
theory. The legend applies to both figures.
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FIG. 3 (color online). (a) Dependence of front velocity on the
probability �wl of zero-diffusion links (D2 ¼ 0) with reactive
(dark circles) and with nonreactive (open circles) sites.
(b) Dependence of front velocity on the probability �d of
zero-diffusion defects (D2 ¼ 0). Points, average over 100 real-
izations; solid lines, original theory; dashed line, modified
formula; dotted line, modified theory.
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FIG. 4 (color online). Dependence of the velocity of a front on
D2 and �d: (a) reactive defects and (b) nonreactive defects.
Points, average over 100 realizations; solid lines, modified
theory. The legend applies to both figures.

PRL 102, 238302 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JUNE 2009

238302-3



convert the bistable medium into an excitable one. The
width of pulses is affected by inhomogeneity: It becomes
smaller, and finally wave breakup is observed. An example
of spiral wave breakup is shown in Fig. 5. The pitch of the
spiral and the size of the pulse decreases as �wl increases
until the spiral breaks in small pieces which are not able to
propagate. A comparison of the pulse velocity with the
prediction of the effective medium theory yields good
agreement [Fig. 5(e)].

Cardiac tissue is an excitable medium where the char-
acteristic size of the heterogeneities often is much smaller
than the size of the pulse, and the results observed for
fronts can be directly applied to large pulses. However,
cell cultures display patterns like the ones observed in
Fig. 5 [7,22]. There have been several attempts to construct
homogenization theories motivated by cardiac tissue, e.g.,
assuming a periodic change in the diffusion coefficient
[11]. Our results are independent of the specific choice of
the RD equations and assume a random distribution of
heterogeneities. The theory works also for spatiotemporal

disorder provided its correlation time is longer than the
diffusion time (‘2het=D2).

In conclusion, we have demonstrated the wide applica-
bility of effective medium theory to the propagation of
pulses in RD systems with a heterogeneous distribution of
links (bond percolation) or defects (site percolation).
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