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We study the low temperature dynamics of the classical Heisenberg antiferromagnet with nearest

neighbor interaction on the frustrated pyrochlore lattice. We present extensive results for the wave vector

and frequency dependence of the dynamical structure factor, obtained from simulations of the preces-

sional dynamics. We also construct a solvable stochastic model for dynamics with conserved magneti-

zation, which accurately reproduces most features of the precessional results. Spin correlations relax at a

rate independent of the wave vector and proportional to the temperature.
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Geometrical frustration in magnets inhibits ordering.
Simple, classical models for these systems have very de-
generate ground states [1,2]. Reflecting this degeneracy,
highly frustrated magnetic materials characteristically re-
main in the paramagnetic phase even at temperatures low
compared to the scale set by exchange interactions. The
behavior in this cooperative paramagnetic regime has been
the focus of much recent research [3,4].

Nearest neighbor antiferromagnets on the pyrochlore
lattice with classical n-component spins are representative
of a large class of models [5,6]. They have remarkable
correlations at low temperature, which are intermediate
between those of conventionally ordered and completely
disordered systems. These can be understood by mapping
spin states onto configurations of a vector field, or flux field,
which is solenoidal for ground states [7–9]. Gaussian
fluctuations of this flux field provide a coarse-grained
description of the cooperative paramagnet. Static spin
correlations have a power-law dependence on separation,
inside a correlation length � that diverges as temperature T
approaches zero. These correlations result in sharp fea-
tures, termed pinch points, in diffuse scattering as a func-
tion of wave vector.

The dynamics of cooperative paramagnets has not been
studied as extensively as the statics, but some ingredients
are clear. In a Heisenberg model with precessional dynam-
ics, the short-time behavior can be viewed in terms of
harmonic spin wave fluctuations in the vicinity of a specific
ground state, while over longer times the system wanders
around the ground-state manifold. This second component
to the motion results in decay of the spin autocorrelation
function at long times, with a decay rate shown to be linear
in T using simulations and phenomenological arguments
[5]. These theoretical ideas are supported by inelastic
neutron scattering measurements on pyrochlore antiferro-
magnets: an early study of CsNiCrF6 revealed strong tem-
perature dependence to the width in energy of quasielastic
scattering for T < j�CWj [10], while recent work on
Y2Ru2O7 shows a width linear in T as predicted [11].

Our aim in this Letter is to establish a much more
comprehensive description of cooperative paramagnets

with precessional dynamics than has been available so
far. The topic is interesting from several perspectives.
First, in view of the pinch points in static correlations, it
is natural to ask about the wave vector dependence of the
dynamical structure factor, accessible in single-crystal
measurements. Little is currently known about this: the
autocorrelation function of Ref. [5] is expressed as an
integral over all wave vectors, while the measurements of
Ref. [11] used a powder sample. Second, dynamics in the
paramagnetic phase of unfrustrated antiferromagnets is
dominated by spin diffusion [12–14], and one would like
to know whether this extends to the cooperative paramag-
net. Third, behavior in the Heisenberg model should be
compared to that in spin ice, which is represented by the
Ising pyrochlore antiferromagnet with dynamics controlled
by the motion of monopole excitations [15].
In outline, our results are as follows. We find at low

temperature three types of behavior in different regions of
reciprocal space. (i) Close to reciprocal lattice points,
correlations are dominated by spin diffusion with a
temperature-independent diffusion constant. (ii) At a ge-
neric wave vector [not included in (i) or (iii)] correlations
are Lorentzian in frequency with a width linear in T and
independent of wave vector. (iii) Close to nodal lines in
reciprocal space on which the static, ground-state structure
factor vanishes [8], dynamical correlations are dominated
by finite-frequency spin wave contributions. This picture is
hence very different from that for the kagome Heisenberg
antiferromagnet, which shows order-by-disorder and
propagating modes [16].
We consider the classical Heisenberg antiferromagnet

with nearest neighbor interactions on the pyrochlore lat-
tice. Lattice sites (labeled i; j) form corner-sharing tetrahe-
dra (labeled �;�). Spins Si are unit vectors and
L� ¼ P

i2�Si is the total spin of tetrahedron �. The
Hamiltonian is

H ¼ J
X
hiji

Si � Sj � 1

2
J
X
�

L2
� þ c; (1)

where c is a constant. Ground states satisfy L� ¼ 0 for all
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�. The equation of motion, describing precession of each
spin around its local exchange field, is

dSi

dt
¼ �JSi �

X
j

Sj; (2)

where sites j are the nearest neighbors of i. The global spin
rotation symmetry of Eq. (1) implies conservation of total
spin in the dynamics.

Before presenting results from a molecular dynamics
study of Eq. (2), we consider an analytically tractable
stochastic model for the dynamic behavior. It is known
that static spin correlators for the classical Heisenberg
model are well described by those for n-component spins
in the large n limit [6,7]. Building on this, we set out to
endow the n ¼ 1 model with appropriate dynamics. First
we recall some details of the static model. Taking the
second form of the Hamiltonian in Eq. (1), a single spin
component in the large n limit has the unnormalized
probability distribution e��E with

�E ¼ 1

2

X
i

�s2i þ
1

2
�J

X
�

l2�; (3)

where now l� ¼ P
i2�si is the sum of ‘‘soft’’ spins (�1<

si <1) on tetrahedron �. The spin length is constrained
by the Lagrange multiplier �. For � ! 1, the second term
in Eq. (3) enforces all the l� to be zero. The interaction
term written directly in terms of the spins is 1

2�J
P

ijðAij þ
2�ijÞsisj, where Aij is the adjacency matrix for the pyro-

chlore lattice. We call the combination Aij þ 2�ij the

interaction matrix. Its eigenvalues v�ðqÞ are labeled by

wave vector q and a band index� 2 f1; 2; 3; 4g. Two bands
are flat [v1;2ðqÞ ¼ 0] and two (� ¼ 3; 4) are dispersive.

Requiring hs2i i ¼ 1=3 to mimic behavior of a single spin
component in the Heisenberg model, � ¼ 3=2þOðT=JÞ
for T � J. We denote the Fourier transform of the spin
variables si by s

a
q, where a is a sublattice index, and define

the sublattice sum sq ¼ P
4
a¼1 s

a
q. Transforming from saq to

the basis (denoted by tildes) that diagonalizes the interac-
tion matrix gives collective spin variables ~s�q . We want to

introduce time dependence and calculate the dynamic cor-
relation function Sðq; tÞ ¼ hsqðtÞs�qð0Þi, and its time

Fourier transform, the dynamic structure factor Sðq; !Þ,
measured using neutron scattering.

There are many choices of dynamics which reproduce
any given equilibrium distribution. To approximate Eq. (2)
we demand a local dynamics that conserves the total spin.
We can ensure this by requiring the spin on each site to
satisfy a local continuity equation. We introduce spin
currents on bonds of the pyrochlore lattice, which have
drift and noise terms. We take the drift current on a bond
linking two sites to be proportional to the difference in the
generalized forces @E=@si at the sites. This favors relaxa-
tion towards a configuration that minimizes E; the thermal
ensemble is maintained by noise which has an independent

Gaussian distribution on each bond. These assumptions
lead to the dynamical equations for the soft spins

dsi
dt

¼ �
X
l

�il

@E

@sl
þ �iðtÞ; (4)

where the matrix � is the lattice Laplacian (for a lattice
with coordination number z, �il ¼ Ail � z�il). The corre-
lator of the noise �iðtÞ at site i, h�iðtÞ�jðt0Þi ¼ 2T��ij�ðt�
t0Þ, has an amplitude fixed by the requirement of thermal
equilibrium. The only free parameter in the model is the
rate �, which sets a time scale for dynamical processes.
The Langevin equation (4) is straightforward to solve in
the diagonal basis. It gives the correlation function

h~s�q ðtÞ~s��qð0Þi ¼
���T

Jv� þ �T
e��ð8�v�ÞðJv�þ�TÞt: (5)

The dynamic correlation function is then

Sðq; tÞ ¼ X4
�¼1

g�ðqÞh~s�q ðtÞ~s��qð0Þi; (6)

where the structure factors g�ðqÞ are formed from the

eigenvectors of the interaction matrix. They satisfy the
sum rule

P
4
�¼1 g�ðqÞ ¼ 4.

For completeness we present their explicit forms here. In

the notation of [7], where cab ¼ cosðqaþqb
4 Þ and cab ¼

cosðqa�qb
4 Þ with Q ¼ c2xy þ c2xy þ c2yz þ c2yz þ c2xz þ c2xz �

3 and defining P � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ

p
, the eigenvalues of the inter-

action matrix are v1;2 ¼ 0 and v3;4 ¼ 4� 2P. Further

defining s2a � sin2ðqa4 Þ and cðabÞ � cab þ cab, the g�ðqÞ
are for the degenerate flat bands

g � g1 þ g2 ¼ 2� 4

3�Q
½cðxyÞs2z þ cðyzÞs2x þ cðzxÞs2y�

and for the dispersive bands

g3;4 ¼ 2� 1

2
gð1	 2P�1Þ 	 P�1ð2� cðyzÞ � cðxzÞ � cðxyÞÞ

which indeed satisfy g1 þ g2 þ g3 þ g4 ¼ 4.
We now examine the implications of this model for T �

J, emphasizing the features (i)–(iii) mentioned in our in-
troduction. From the exponent in Eq. (5) we obtain a
characteristic time for decay of correlations. (i) In the
vicinity of q ¼ 0 only the coefficient g4ðqÞ is nonzero
and so behavior is controlled by the fourth band whose
decay rate is 	�1 ¼ 8�Ja2q2 þOðq4Þ, where a is the
pyrochlore site spacing; from this we identify the spin
diffusion constant in this model as D ¼ 8�Ja2, indepen-
dent of T. (ii) At a generic wave vector where g1 and g2 are
nonzero, most of the spectral weight is in the flat bands,
with decay rate 	�1 ¼ 8��T, independent of q; in an
approximation where only the flat bands contribute, this
implies the dynamic structure factor factorizes as
Sðq; !Þ ¼ SðqÞfð!Þ, a possibility noted in [6]. (iii) On
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nodal lines [8], high symmetry directions in reciprocal
space along which g1ðqÞ þ g2ðqÞ ¼ 0, the decay rate is
wave vector dependent and OðJÞ away from q ¼ 0.

To test these ideas we have performed simulations of the
full precessional dynamics, Eq. (2). Low T configurations
are obtained using a Metropolis Monte Carlo sampling
method. We take these as initial configurations for numeri-
cal integration of the equations of motion using a fourth-
order Runge-Kutta algorithm with adaptive step size.
Energy and total spin are conserved to relative errors no
greater than 10�6. We report data from simulations on
system sizes with total number of sites N ¼ 4L3 for L ¼
16; 32. We calculate the dynamic correlation function
Sðq; tÞ � hSqðtÞ � S�qð0Þi and the dynamical structure fac-

tor Sðq; !Þ � hjSqð!Þj2i, where Sq ¼ P
4
a¼1 S

a
q is the

Fourier transformed spin configuration and a runs over
the four sublattices. We present results under the headings
(i)–(iii) as above, expressing q in reciprocal lattice units as
q ¼ 2
k for Figs. 2–4.

(i) Since the total magnetization is conserved, one ex-
pects diffusion at sufficiently small q. The simulations
confirm diffusive behavior with a diffusion constant inde-
pendent of temperature. At small q, the data should col-
lapse onto the scaling form appropriate for diffusion,

�q2Sðq; !Þ ¼ 3�
2D

ð!=q2Þ2 þD2
; (7)

where � is the susceptibility per primitive unit cell and the
factor of 3 is due to the three spin components. Figure 1
shows this scaling collapse when plotted as in Eq. (7), and
demonstrates that the diffusion constant is independent of
temperature. The prediction of Eq. (6), whose small q limit
has precisely the form of Eq. (7), is an excellent fit with
� ¼ 0:167.

(ii) At a generic point in reciprocal space (not near q ¼
0 or a nodal line) the structure factor is well described by a
Lorentzian centered on ! ¼ 0, indicating relaxational dy-
namics (Fig. 2, upper inset). The decay rate for this relaxa-
tion (Fig. 2, main panel) is proportional to T and
independent of the wave vector, even close to the pinch
points.
(iii) On nodal lines, by contrast, the width in frequency

of Sðq; !Þ isOðJÞ and depends little on T; see Fig. 2, lower
inset. High frequency (! ¼ 2:5J) and zero frequency be-
havior is also presented in Fig. 3, as a survey of Sðq; !Þ in
the ðqx; qx; qzÞ plane, using data taken at �J ¼ 500 and
typical of all low temperatures. Weight in Sðq; !Þ at!
 J
and low T can be viewed as due to spin wave fluctuations in
the vicinity of an instantaneous ground state. In contrast to
behavior in the kagome antiferromagnet [16], there is no
evidence in Fig. 3 for sharp propagating modes.
We next demonstrate that the stochastic model accu-

rately reproduces most aspects of the precessional dynam-
ics. We examine behavior with each type of dynamics at
different temperatures and times along a path in the

Brillouin zone: P ¼ ð0; 0; 0Þ !P 1 ð2; 2; 2Þ !P 2 ð0; 0; 2Þ. This
consists of the section P 1 along high symmetry nodal lines
passing through a pinch point, and a section P 2 typical of
reciprocal space. We compare in Fig. 4 the dynamic corre-
lation function, normalized to unity at t ¼ 0, at two tem-
peratures with the predictions from Eq. (6) along the path
P . The excellent agreement of the curves across multiple
temperatures, wave vectors, and times is good evidence
that the stochastic model is sufficient to capture the relaxa-
tion behavior. It fails only at short times (t & J�1, not
shown in Fig. 4) on nodal lines, where it does not account
for oscillatory spin wave contributions.
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FIG. 2 (color online). Main panel: Decay rate of Sðq; tÞ as a
function of T at wave vectors as indicated. Upper inset: Sðq; !Þ
at �J ¼ 40 (red curve) and 100 (blue curve), for k ¼ ð1; 1; 1Þ.
Lower inset: Sðq; !Þ on a nodal line at k ¼ ð0; 0; 1:25Þ.
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FIG. 1 (color online). Evidence for spin diffusion. (a) De-
pendence of Sðq;!Þ on q and ! at small q. (b) Scaling collapse
following Eq. (7) at multiple temperatures (�J ¼ 20; 40; 60; 80)
and four of the wave vectors plotted in (a). Also plotted is the
prediction of Eq. (6).
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The stochastic model is microscopic and its main ingre-
dients are a conservation law and the pyrochlore lattice
structure. A long wavelength description is provided by the
mapping to flux fields [7,8] and it is interesting to see how
the dynamics translates under this mapping. Taking the low
temperature, small q limit, the correlators for the contin-
uum flux fields Bðq; tÞ implied by the stochastic model are

hBiðq; tÞBjð�q;0Þi /
�
�ij �

qiqj

q2

�
e�8��Tt

þ
�
qiqj

q2
� qiqj

q2 þ��2

�
e�8�ðJa2q2þ�TÞt:

This result can be derived from a Langevin equation for the
continuum flux fields in which the ‘‘monopole density’’
� ¼ r �B obeys a continuity equation @t�þr � j ¼ 0,
with monopole current density

j ¼ 8��TB� 8�Ja2r�þ ðtÞ: (8)

Here, the second term is the usual diffusion current arising
from a density gradient, while the first describes response
to an entropic force. This response involves a drift current
of the magnetic charge density � in the field B that mimics
electrical conduction in electrodynamics and is responsible
for the flat relaxation rate. Related results have been ob-
tained recently in a study of dynamics in spin ice, repre-
sented by the Ising antiferromagnet [15]. In this case
monopoles are discrete and it has been argued that purely
diffusive dynamics are insufficient to explain observations
and a full description must include the network of Dirac
strings between monopoles, which are essentially entropic,
as well as dipolar interactions [15]. In spin ice, dipolar
interactions lead to Coulomb-law forces between mono-
poles. By contrast, in Eq. (8) Coulombic forces appear
purely entropically.

In summary, we have considered wave vector and fre-
quency resolved dynamics of the classical pyrochlore anti-
ferromagnet. The relaxational behavior is well captured by
a stochastic model that conserves total spin. Spin diffuses
with a diffusion constant independent of temperature, and
entropic forces drive currents to relax configurations with a
rate independent of wave vector and inversely proportional
to temperature.
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FIG. 4 (color online). Solid blue lines: Normalized correla-
tion function Sðq; tÞ=Sðq; 0Þ. Dashed red lines: Prediction from
Eq. (6) with � ¼ 0:167, both shown at 3 times, t.
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FIG. 3 (color online). Intensity map of �Sðq; !Þ in the
ðqx; qx; qzÞ plane at �J ¼ 500. (a) Lower panel: Zero frequency
(data divided by 1:25� 105); white line is path P . Upper
panel: ! ¼ 2:5J; black circle is centered on a pinch point.
(b) Section along path segment P 1 (see text).
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