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We demonstrate that it is possible to realize vortex ice states that are analogous to square and kagome

ice. With numerical simulations, we show that the system can be brought into a state that obeys either

global or local ice rules by applying an external current according to an annealing protocol. We explore

the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice,

topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We

argue that the vortex system offers significant advantages over other artificial ice systems.
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Geometric frustration occurs when a system is con-
strained by geometry in such a way that the pairwise
interaction energy cannot be simultaneously minimized
for all constituents, and appears in water ice [1], spin
systems [2–4], and a variety of other systems in both
physics [5] and biology [6]. A specific example of frustra-
tion occurs in the classical spin ice system where the
constituents of the system are magnetic spins on a grid of
corner-sharing tetrahedra. The spins are constrained to
point along the lines connecting the middle points of the
tetrahedra [3,4] and pairs of spins can minimize their
energy by adopting a head-to-tail configuration. It is not,
however, possible for the four spins on a tetrahedron to
simultaneously satisfy each of the six pairwise interactions
in a head-to-tail fashion; the best the system can do is to
satisfy four interactions out of six, leaving two pairs in a
head-to-head or tail-to-tail configuration. As a result, in the
ground state configuration, each tetrahedron obeys the so-
called ‘‘ice rule’’ of a two-in two-out configuration with
two spins pointing toward the center of the tetrahedron and
two spins pointing away from it. Defects appear in the form
of magnetic monopoles [7].

Recently, there has been growing interest in creating
model systems that exhibit spin-ice behavior [8–14] and
that allow the individual constituents to be imaged directly,
unlike molecular or atomic ices. For example, Wang et al.
[8] created artificial square ice using single-domain rect-
angular ferromagnetic islands arranged in a square lattice
such that four islands meet at every vertex point. They
found that as the inter-island interaction increased, the
system preferentially formed ice-rule-obeying vertices,
but it did not reproduce the known ground state of two-
dimensional (2D) spin ice, where the two ‘‘in’’ magnetic
moments are on opposite sides of the vertex. This could be
due to the relative weakness of the magnetic interactions. It
has recently been shown that certain dynamical annealing
protocols permit the system to approach the ground state
more closely [9,10]. Similar studies have been performed
for a 2D kagome ice system [12,13] where the local ice
rules were obeyed and defects such as three-in or three-out
were absent [13]. In the colloidal artificial ice system of

Ref. [14], the local dynamics can be accessed easily via
video microscopy; however, the ice arrays in this system
are limited to relatively small sizes in experiment.
Here, we propose that a particularly promising artificial

ice system could be created using vortices in superconduc-
tors with appropriately designed nanostructured arrays of
artificial pinning sites. There has been extensive experi-
mental work showing that a rich variety of different pin-
ning array geometries can be fabricated [15–20], and
various types of experimental techniques exist for directly
imaging vortices in these arrays [17–19,21]. The vortex
system has several advantages over other artificial ice
systems. The vortex-vortex interaction strength is large,
permitting the ground state to be reached much more read-
ily than in the nanomagnetic systems. An applied external
current permits the straightforward realization of different
dynamical annealing protocols. New types of defects can
be studied by merely increasing or decreasing the magnetic
field to create vacancies or interstitials that locally break
the ice rules, while transport properties and critical currents
can be measured which are not accessible in the other
systems.
To form square vortex ice, we propose using an arrange-

ment of elongated double-well pinning sites. Nonsuper-
conducting islands with the double-hump shape illustrated
in Fig. 1(a) placed within a superconducting layer have a
pair of potential minima at the highest points of the island
where the superconducting layer is the shallowest. A single
vortex trapped over each island will sit at one of the two

FIG. 1 (color). Schematic of the nanostructured pinning site
configurations producing ice states. Double-lobed objects: pins;
open mesh objects: vortices. (a) Square ice ground state. (b) One
possible biased ground state of the kagome ice system.
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minima, depending on the interactions with nearby vor-
tices. By changing the arrangement of the islands, differ-
ent types of ice can be created. For square ice, shown in
Fig. 1(a), four islands come together at each vertex and the
state of each island is defined as ‘‘in’’ if the vortex sits close
to the vertex and ‘‘out’’ otherwise. We define nin as the
number of ‘‘in’’ vortices at a vertex. In Fig. 1(a), the
vortices have formed an nin ¼ 2 ice-rule-obeying ground
state configuration. Figure 1(b) shows a kagome spin ice
arrangement with three islands surrounding each vertex. In
this case, the lowest energy state has nin ¼ 1 or nin ¼ 2 at
each vertex, but there is no overall ordering into a unique
ground state.

To study the vortex ice, we perform numerical simula-
tions of a 2D sample with periodic boundaries containing
Np elongated pinning sites in the square or kagome con-

figurations illustrated in Fig. 1 and Nv ¼ Np vortices. A

vortex i at position Ri obeys the following overdamped
equation of motion: �ðdRi=dtÞ ¼ fvvi þ fsi þ fd þ fTi .
The damping constant � ¼ �2

0d=2��
2�N , where �0 ¼

h=2e is the flux quantum, � is the superconducting coher-
ence length, �N is the normal state resistivity of the mate-
rial, and d is the thickness of the superconducting crystal.

The vortex-vortex interaction force is given by fvvi ¼
PNv

j�i f0K1ðRij=�ÞR̂ij, where K1 is the modified Bessel

function appropriate for stiff three-dimensional vortex
lines, � is the London penetration depth, f0 ¼
�2

0=ð2��0�
3Þ, Rij ¼ jRi �Rjj, and R̂ij ¼ ðRi �

RjÞ=Rij. The substrate force fsi arises from the elon-

gated pins, fsik ¼ PNp

k f0ðfp=rpÞR�
ik�ðrp � R�

ikÞR̂�
ik þ

f0ðfp=rpÞR?
ik�ðrp � R?

ikÞR̂?
ik þ f0ðfb=lÞð1 � Rk
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ik. Here, R�
ik ¼ jRi �Rp

k � lp̂k
kj, R?;k

ik ¼
jðRi �Rp

k Þ � p̂k
?;kj, Rp

k is the position of pin k, and p̂k
k

(p̂k
?) is a unit vector parallel (perpendicular) to the axis

of pin k. Each vortex is constrained to stay within a pin
composed of two half-parabolic wells of radius rp ¼ 0:4�

separated by an elongated region of length 2l which con-
fines the vortex perpendicular to the pin axis and has a
repulsive potential or barrier of strength fb parallel to the
axis which pushes the vortex out of the middle of the pin
into one of the ends. We take l ¼ 2=3� or 5=6� and vary
the lattice constant a of the pinning array between a ¼
2:0� and 8:0�. The driving force fd represents the Lorentz
force from an applied current. The thermal force fTi comes

from thermal Langevin kicks and is set to zero except
during the annealing of the kagome ice.

Square Ice.—We prepare the square ice system using a
dynamical annealing procedure inspired by the nanomag-
netic ice results of Refs. [9,10]. In our simulations, we
place one vortex in each pin at a random position and
then use a protocol of a rotating in-plane applied current
with decreasing amplitude, fd ¼ AacðtÞ½cosð2�t=TrÞx̂þ
sinð2�t=TrÞŷ�, where Tr ¼ 1000 simulation time steps,
AacðtÞ ¼ �ðA0 � �Abt=�tcÞ, A0 ¼ 2:0f0, �t ¼ 10 000

simulation time steps, and �A ¼ 0:01f0. The force direc-
tion is reversed each time the magnitude of the force is
decreased. We measure the number of vertices of each type
that appear after completing the dynamical annealing. For
the kagome ice system, we obtain the vortex configurations
from standard thermal simulated annealing.
To determine how effectively the dynamical annealing

protocol brings the square ice system to the ground state,
we introduce disorder to the system by replacing the delta-
function distributed barriers fb at the center of each pin-
ning site with barriers of normally distributed strength,
where the mean strength is fb and the width of the distri-
bution is 	. In Fig. 2, we illustrate the vertices that have
reached the ground state configuration of nin ¼ 2 in a
square ice sample with a ¼ 2:5�, l ¼ 5=6�, and fb ¼
0:25f0 for differing disorder widths 	. The dots represent
vertices in the ice-rule obeying ground state, while the
closed black circles indicate higher energy vertices that
we term ice-rule defects DI since they still obey the nin ¼
2 ice rule but have the two ‘‘in’’ vortices adjacent to one
another. The open circles mark the highest energy vertices
that we term non-ice-rule defects DNI since they do not
obey the nin ¼ 2 ice rule but have, for example, nin ¼ 3 or
nin ¼ 0. For 	< 0:1, the system can reach the ordered
ground state as shown in Fig. 2(a). As the central barriers of
the pins become more nonuniform with increasing	, some
pinning centers act as nucleation sites for grain boundaries,
as illustrated in Figs. 2(b) and 2(c) for 	 ¼ 0:1 and 	 ¼
0:5. In general, we find that for 0:1<	< 0:7, all of the
defected vertices form closed loop grain boundaries and
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FIG. 2. Grain boundary images in square ice samples with a ¼
2:5�, l ¼ 5=6�, and fb ¼ 0:25 for increasing disorder width 	.
Dots: ground state nin ¼ 2 ice-rule-obeying vertices; filled black
circles: ice-rule defects DI; white circles: non-ice-rule defects
DNI. (a) 	 ¼ 0. (b) 	 ¼ 0:1. (c) 	 ¼ 0:5. (d) 	 ¼ 1:0.

PRL 102, 237004 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JUNE 2009

237004-2



the ratio of DI to DNI is 1:1 due to geometric constraints.
For 	 � 0:7, Fig. 2(d) shows that a proliferation of DNI

occurs so that theDNI outnumber theDI. The grain bound-
ary loops interact and wind around the sample, making it
difficult to determine the relation between 	 and the grain
boundary length. We find that individual DNI can appear
outside of grain boundaries, while DI always remain con-
fined to grain boundaries, suggesting that there could be a
disorder-induced phase transition when theDNI proliferate.
We also find that doubly occupied pinning sites with two
vortices each can act as grain boundary nucleation sites, as
illustrated in the inset of Fig. 3(b).

In Fig. 4(a), we plot the percentage of vertices PGS that
are in the ice-rule-obeying ground state as a function of
time during the dynamical annealing procedure in a sample
with a ¼ 2:5�, l ¼ 5=6�, fb ¼ 0:25f0, and different val-
ues of 	. At early times, when jAacj is close to A0, all of the
vortices follow the drive and switch back and forth inside
the pinning sites. As jAacj decreases, a transition occurs
when the vortices cease to follow the driving direction and
become locked into one position in the pinning site. For
	 ¼ 0, this locking transition is relatively sharp and occurs
at jAacj � 0:82f0. Nonzero values of 	 broaden the tran-
sition significantly and cause some vertices to lock into the
ground state at much earlier times; at the same time,

complete locking of all vertices into the ground state can
no longer be achieved within the finite time of the dy-
namical annealing process. We quantify the broadening of
the transition with increasing 	 by fitting the curves in
Fig. 4(a) to the form PGSðtÞ ¼ 1� expðt=
Þ. Figure 4(b)
shows the fitted relaxation time 
 as a function of 	 and
indicates the occurrence of an increasingly slow locking
process as the disorder width increases. The dependence of
PGS on both a and 	 is summarized in Fig. 4(d) for a
system with fb ¼ 1:0 and l ¼ 2=3�. Here, PGS decreases
both with increasing	 and with increasing a as the relative
strength of the vortex-vortex interactions decreases.
Depending on the system parameters, it is not always

necessary to perform a dynamical annealing procedure in
order to reach the ground state. To demonstrate this, we
prepare the sample in a random state and then apply a

fixed amplitude rotating drive, fd ¼ ~A½cosð2�t=TrÞx̂þ
sinð2�t=TrÞŷ�, with ~A ¼ 0:01f0 and Tr ¼ 1000 simulation
time steps, for 2� 106 simulation time steps. When the
central barrier in the pin fb is weak, the system can reach
the ordered ground state under the weak external shaking.
For larger fb, the system cannot reach the ordered ground
state without dynamical annealing. This is shown in
Fig. 4(c), where we plot the final PGS at the end of the
simulation time versus fb for samples with 	 ¼ 0:01 and
varied pinning lattice constant a ¼ 2:0�, 2:5�, and 3:0�.
For large fb, the sample is immediately frozen into the
disordered initial configuration, and PGS � 0:125, consis-
tent with the value expected in a completely random sam-
ple. As fb is lowered, a spontaneous rearrangement into a
partially ordered state becomes possible and PGS > 0:125.
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FIG. 4 (color). (a) Percentage PGS of ice-rule-obeying ground
state vertices vs time during the dynamical annealing process for
different disorder widths 	. From upper right to lower right, 	 ¼
0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, and 1.0. Here, a ¼
2:5�, l ¼ 5=6�, and fb ¼ 0:25. (b) Relaxation time 
 vs 	 for
the same system. (c) Final value of PGS vs fb in samples
subjected to a small shaking field with no dynamical annealing.
Here, l ¼ 5=6�, 	 ¼ 0:1, and a ¼ 2:0� (open circles), 2:5�
(filled squares), and 3:0� (open diamonds). (d) PGS vs 	 and
a in a sample with fb ¼ 1:0 and l ¼ 2=3�.
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FIG. 3 (color). (a) Ordered biased ground state in a sample
with kagome pinning, fb ¼ 1:0, l ¼ 2=3�, and a ¼ 3�. Open
circles: nin ¼ 1 vertices; shaded circles: nin ¼ 2 vertices.
(b) Percentage PV of each vertex type vs a. Crosses: nin ¼ 0;
open circles: nin ¼ 1; shaded circles: nin ¼ 2; filled squares:
nin ¼ 3. Inset: grain boundary image in square ice sample with
two doubly occupied pins (open squares) with the same symbols
as in Fig. 2. (c) Vertex configuration after thermal annealing in a
sample with a ¼ 3:5�, l ¼ 2=3, and fb ¼ 1:0. Symbols are the
same as in the main panel of (b).
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The value of fb at which the spontaneous ordering appears
increases with decreasing a, indicating that as the vortex-
vortex interactions grow stronger in the denser pinning
arrays, the ordered ground state is much more energetically
favored.

Kagome ice.—The kagome lattice illustrated in Fig. 1(b)
has a distinct set of ice rules from the square lattice. High
energy vertices with nin ¼ 0 or 3 are avoided in favor of
the kagome-ice-rule obeying vertices with nin ¼ 1 or 2.
This system can form a nonunique ordered ground state,
but only in the presence of an external biasing field. In
Fig. 3(a), we show one possible biased ordered ground
state for a kagome lattice with fb ¼ 1:0 and 	 ¼ 0 ob-
tained by applying a constant drive fd ¼ 0:01f0ðx̂þ ŷÞ
along a lattice symmetry direction while performing simu-
lated annealing. In the absence of the biasing force, some
high energy defect vertices which take the form of mono-
poles appear in the system and there is no overall order, as
illustrated in Fig. 3(c). We find that the kagome ice is more
robust against the effects of disorder than the square ice, in
agreement with experimental findings for nanomagnetic
kagome ice [13]. The defect patterns are distinct from the
square ice since no grain boundary state forms for the
kagome ice due to the lack of an ordered ground state.
Unlike the bipartite square lattice, the nonbipartite kagome
lattice is not topologically constrained, making our system
more closely resemble the ice state studied in Ref. [22]
than that considered in Ref. [23]. Although Fig. 3(c) shows
that there is some tendency for the defected vertices to
form pairs, there are no extended defect patterns of the type
seen in Fig. 2. Since the ice rules in this system are
enforced by the vortex-vortex interaction energies, we
can weaken the enforcement of the ice rules by increasing
the spacing a between pinning sites. Figure 3(b) shows that
as a increases, the system passes from a limit in which only
kagome-ice-rule-obeying vortices appear for a � 4� to a
limit a � 8� where the vertices assume a completely
random arrangement. In the random limit, we expect to
find each of the two defect vertex types with probability
1=8 and each of the two kagome-ice-rule-obeying vertices
with probability 3=8.

There are other arrays that would obey ice-rule type
constraints; however, the simplest cases for 2D are the
square and kagome arrays. Previous studies of supercon-
ducting wire networks arranged in kagome configurations
found geometrical frustration which produced disordered
ground states [24]; however, such a system does not spe-
cifically have ice-rule obeying states. The artificial ice
vortex system proposed here can be used to study the effect
of ice-rule and non-ice-rule configurations on transport and
magnetization properties, and it would also be possible to
examine higher matching fields to see whether new types
of ordered or disordered states appear.

In summary, we propose that square and kagome vortex
ice can be realized in nanostructured superconductors. By
using an annealing protocol of a rotating externally applied
current, the system can reach or approach the square ice

ground state. In the presence of quenched disorder, defects
appear in an ordered ground state background. For moder-
ate disorder in the square ice system, all of the defects are
bound to grain boundaries, while for strong disorder, indi-
vidual high energy vertices proliferate. For kagome ice, we
find no grain boundary phase in the presence of disorder.
We predict that if the barrier for vortex motion across the
center of each artificial pinning site is weak, the system
will spontaneously organize into a partially ordered state
even without use of an annealing protocol. This system
could have interesting transport and memory effects which
may manifest themselves as changes in the critical current,
an effect which cannot be accessed readily in other artifi-
cial ice systems.
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