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We propose ways to create and detect fractionally charged excitations in integer quantum Hall edge

states. The charge fractionalization occurs due to the Coulomb interaction between electrons propagating

on different edge channels. The fractional charge of the solitonlike collective excitations can be observed

in time-resolved or frequency-dependent shot noise measurements.
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Introduction.—Fractionalization in low-dimensional
systems is a striking example of emergent behavior caused
by strong correlations. Well known examples include frac-
tionally charged excitations in one-dimensional charge
density wave systems [1] and in the fractional quantum
Hall (FQH) effect [2]. In particular, the detection of frac-
tional charge by measuring shot noise in the point contact
scattering current between FQH edge states [3,4] made the
latter a celebrated example.

Pham et al. have predicted [5] that an electron injected
into an interacting wire will be fractionalized into right-
and left-moving excitations, each carrying a noninteger
charge that depends on the Luttinger parameter g. The
observation of this effect is a considerable challenge, be-
cause it occurs inside the interacting wire, while most
measurements are made in the Fermi liquid leads. Strong
evidence for electron fractionalization has recently been
given in GaAs quantum wires [6,7] by a clever analysis of
transport measurements. However, a direct detection of the
fractional charge is desirable.

In this Letter, we propose ways to create and detect
excitations with well-defined fractional charges by inject-
ing electrons into integer quantum Hall (IQH) edge states.
Unlike the FQH case [3], the fractional charge of these
collective excitations is not associated with fractional qua-
siparticles in the bulk but rather results from Coulomb
interactions between electrons on the edges [8,9]. The
role of the bulk integer QH state is to provide edge states
which would form a chiral Fermi liquid [10] in the absence
of Coulomb interactions. An important advantage of our
IQH setting is the spatial separation of the edge states of
opposite chirality, which allows separate access to each
edge. For instance, the current can be injected into one
edge, while the backscattered current is collected on the
other.

We propose to detect the charge fractionalization by spe-
cific time-resolved or finite frequency [8,11,12] shot noise
experiments, which can directly measure the charge of the
elementary carriers. To demonstrate this, we calculate ex-
plicitly the shot noise in the two proposed geometries

shown in Fig. 1. We will now discuss these geometries in
detail.
� ¼ 1 geometry.—This geometry, shown in Fig. 1(a),

consists of a pair of counterpropagating IQH edge states,
which are close enough for significant interedge interac-
tions in the center region, and a lead, which injects elec-
trons into one of the edge states via tunneling. For
simplicity, we assume that the electron spins are com-
pletely polarized along the magnetic field. The pair of
edge states can be modeled as a nonchiral Luttinger liquid
(LL) with position-dependent interaction parameter gðxÞ,
which varies smoothly (on the scale of the magnetic length
‘B) from g1 ¼ 1 to g2 < 1 and back to g1. The value of g2
is determined by the strength of the interedge interaction in
the center region. We assume that the interedge separation
in the center region is large enough so that interedge
tunneling is negligible while small enough to allow for
significant interedge interactions. This is possible, in prin-
ciple, since the tunneling is suppressed exponentially with
the interedge distance d [13], while the interaction decays
only as a power law. The lead is biased with voltage Vlead,
relative to the upper (right-moving) edge.
Fractionalization due to interactions in the central region

manifests itself through the reflection of a fractional charge

q� ¼ re, with r ¼ ð1� g2Þ=ð1þ g2Þ< 1 [14], in the

lower edge each time an injected electron hits the x ¼ 0
boundary between the noninteracting and interacting re-
gions (see Fig. 1). This is a consequence of the fact that the
right-moving eigenmode of the interacting region consists
of electrons of both chiralities [5,15]. In this region, the
injected electron in the upper edge induces a ‘‘mirror’’
charge �q� on the lower edge [16]. Since charge is con-
served on each edge separately (due to the absence of
interedge tunneling), this requires a simultaneous reflec-
tion of charge q� in the lower edge.
It is important to emphasize that r is not a quantum

amplitude for electron reflection [7,14]. A fractional
charge q� is reflected to the lower edge each time an
electron tunnels in from the lead to the upper edge. In
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fact, r is the reflection coefficient of the edge plasmon
modes in the infinite wavelength limit.

The propagating mode in the interacting region is later
partially reflected from the x ¼ ‘ boundary in a similar
process. This repeats alternately at the x ¼ 0 and x ¼ ‘
boundaries. Eventually, the net reflected charge in the
lower edge is zero, and the net transmitted charge on the
upper edge is e. This follows from the separate charge
conservation laws on the two edges.

Clearly, in order to detect the excitations with a well-
defined charge q� created in the first reflection, it is neces-
sary to avoid later reflections that carry a different charge.
This can be done formally by sending ‘, the length of the
interacting wire, to infinity, hence absorbing all of the
transmitted charge. We consider the noise in the reflected
current at frequency !, defined as

SLð!Þ ¼
Z 1

�1
dtei!t½hfILðtÞ; ILð0Þgi � 2hILð0Þi2�; (1)

where IL is the left-moving current and f. . .g represents an
anticommutator. Taking the limit ‘ ! 1 first and then
! ! 0, one expects the noise at temperature T to take
the form

S‘ð‘ ! 1; ! ! 0Þ ¼ Stunð! ! 0Þ þ S0ð! ! 0Þ: (2)

Here the noise due to the tunneling from the lead Stunð! !
0Þ has the form (assuming uncorrelated tunneling events)

Stunð! ! 0Þ ¼ 2q� coth
�
eVlead

2T

�
hILi; (3)

which depends explicitly on q� ¼ re. Vlead is the lead bias

voltage, and S0ð!Þ ¼ e2

2�! cothð!2TÞ is the LL noise in the

absence of tunneling [17]. We have set @ ¼ kB ¼ 1. The
main steps in the derivation of Eq. (3) will be outlined
below.

In a finite size system, we propose two ways to observe
the charge fractionalization. First, the fractionalization has
imprints in the finite frequency noise of reflected current,
similar to the case of an impurity in a LL [11]. Second, we
propose a scheme for recovering Eq. (3) even for a finite
system. The measurement is divided into cycles. In each
cycle, Vlead is turned on for a time interval �T0 & 2‘=u,

where u is the charge velocity in the interacting region, and
then turned off. The backscattered current and noise are
then measured over a time window which extends from t ¼
T0 to t ¼ T0 þ �T0, where T0 is the time interval between
the tunneling of an electron from the lead and the arrival of
a reflected charge to the detector in the lower edge. This
ensures that only reflections from the x ¼ 0 boundary are
detected. The measurement is then stopped for a time
interval of a few times �T0, during which the excess
charge in the interacting region decays. The measurement
cycle is then repeated. The noise averaged over many
cycles should satisfy Eq. (3), from which the fractional
charge q� can be extracted.
The above procedure requires that �T0 is much longer

than the characteristic time of a single tunneling event
�Ttun. Since electrons are injected at energy eVlead,
�Ttun � 1=eVlead [18], leading to the additional condition
eVlead � 1=�T0.
We now derive Eq. (3), as well as a general formula for

the frequency-dependent noise in the backscattered cur-
rent. The system is described by the Hamiltonian

H ¼ H 1 þH lead þH tun; (4)

where H 1 is the LL Hamiltonian

H 1 ¼
Z

dxfv½ð@x�RÞ2 þ ð@x�LÞ2�
þ 2VðxÞ@x�L@x�Rg: (5)

Here �R and �L are bosonic fields describing the two
chiral edge modes, satisfying ½�R=LðxÞ; �R=Lðx0Þ� ¼
� i

4 sgnðx� x0Þ, where the upper (lower) sign corresponds

to the right- (left-) moving field, and ½�RðxÞ; �Lðx0Þ� ¼ i
4 .

v ¼ vF þU, where vF is the ‘‘bare’’ (noninteracting)
Fermi velocity, and U and VðxÞ are the intraedge and
interedge interaction strengths, respectively. We assume,
for simplicity, that U is position-independent and that
VðxÞ ¼ 0 for x < 0 and x > ‘. The Luttinger parameter

and the charge velocity are given by gðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½v� VðxÞ�=½vþ VðxÞ�p
and uðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � ½VðxÞ�2p
,

respectively.

FIG. 1 (color online). Geometries of
the proposed experiments. See text for
details. (a) � ¼ 1 geometry. The shaded
region is an IQH bar. In the central
narrow region, interedge interactions
are significant, leading to an interaction
parameter g < 1, while everywhere else
g ¼ 1. (b) � ¼ 2 geometry. In the nar-
row region, the inner edge mode is re-
flected, while the other is transmitted.
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H lead is the lead Hamiltonian

H lead ¼
X
k

ð"k þ eVleadÞcyk ck; (6)

where "k are the single-particle levels in the lead andH tun

is the tunneling Hamiltonian between the lead and the
upper (right-moving) edge:

H tun ¼ ��c y
Rðx0Þcðx0Þ þ H:c: (7)

cyk is a creation operator of an electron in the lead, and c y
R

is the creation operator of a right-moving electron. The
tunnel junction is located at x0 < 0.

In order to calculate the backscattered current hILi and
the frequency-dependent noise Stunð!Þ, we use the stan-
dard nonequilibrium Keldysh formalism [19]. Both the
current and the noise are calculated to second order in
the tunneling amplitude �, assuming it is small (which is
necessary to ensure Poisson distributed tunneling events).
We omit the details of this calculation, which are similar to
those of [17], and state only the results below. The back-
scattered current is

hILðx1Þi ¼ rð! ! 0ÞItun: (8)

rð!Þ is the frequency-dependent reflection coefficient

rð!Þ ¼ �2ivF

Z 1

0
dtei!th½@x�Lðx; tÞ; �Rðx0; 0Þ�i: (9)

rð!Þ defined in Eq. (9) coincides with the reflection co-

efficient of the edges plasmon modes [8]. Itun ¼
e2j�j2
vF

Nð0ÞVlead is the tunneling current [20], where Nð0Þ
is the density of states of the lead at the Fermi energy.

In the important regime eVlead � !, the shot noise in
the reflected current takes the simple form

Stunð!Þ ¼ 2erð!Þrð�!Þ coth
�
eVlead

2T

�
Itun; (10)

where rð!Þ is given by Eq. (9). Here we have subtracted the
S0ð!Þ term, which is unrelated to the tunneling from the
lead. We see that Stunð! ! 0Þ satisfies Eq. (3).

As we noted before, for a finite length of the interacting
region, rð! ! 0Þ ¼ 0, and therefore both hILðx1Þi and
Stð! ! 0Þ vanish. We demonstrate the signatures of
charge fractionalization in the finite frequency noise by
calculating the noise explicitly from Eq. (10) for the case of
a ‘‘step’’ variation of the interedge interaction strength, i.e.,
gðxÞ ¼ g < 1 for 0< x< ‘ and gðxÞ ¼ 1 elsewhere. In
this case, the reflection coefficient can be found analyti-
cally by considering the infinite sequence of reflections
from the two boundaries. The time-dependent reflection
coefficient is [14]

rðtÞ ¼ r0�ðtÞ þ t0r
0
0t

0
0

X1
n¼0

ðr00Þ2n�½t� ðnþ 1Þ�T�; (11)

where r0 ¼ 1�g
1þg (r

0
0 ¼ g�1

gþ1 ) and t0 ¼ 2g
1þg (t

0
0 ¼ 2

1þg ) are the

reflection and transmission coefficients from the noninter-
acting to the interacting (interacting to noninteracting)

boundary, respectively, and�T ¼ 2‘
u . Fourier transforming

Eq. (11), we get

rð!Þ ¼ r0
1� ei!�T

1� r20e
i!�T

: (12)

The resulting shot noise from Eq. (10) is peaked at ! ¼
�
�T , and both its height and width depend on g.

In the above expression, the characteristic frequency of
the noise spectrum is 1

�T ¼ u=‘. This sets the required time

resolution for detecting charge fractionalization. Assuming
that ‘ is as large as a few millimeters and u� 105–106 m=s
[21,22], the above characteristic frequency is of the order
of 102–103 MHz. In order for Eq. (10) to hold, eVlead �
!� 0:01–0:1 �eV is required.
We roughly estimate the typical values of the interaction

parameter g and hence the reflected fractional charge q�. g
depends on the intraedge interaction U and interedge in-
teraction V. Measurements of the magnetoplasmon fre-
quency on a single (V ¼ 0) IQH edge [23] indicate that
U � vF. In order to estimate the value of V=U, we model
the pair of edge states as cylindrical wires of radius a� ‘B,
at a distance d apart. Assuming a screened Coulomb

interaction with screening length lsc > d, U� e2

"� lnlsca and

V � e2

"� lnlscd , where " is the dielectric constant of the

surrounding semiconductor. For a rough feeling on the
typical values of g, we use lsc ¼ 2d and d ¼ 10a, for
which V

U ’ 0:3. This gives (assuming that U ¼ vF, which

yields an upper bound on g) g ’ 0:86, and therefore q� ¼
1�g
1þg e ’ 0:075e. Because of the logarithmic dependence of

U and V on the geometrical parameters, g is not extremely
sensitive to the geometry as long as lsc is large enough.
Similar estimates of g were obtained in Ref. [24].
� ¼ 2 geometry.—This geometry, shown in Fig. 1(b),

consists of a � ¼ 2 IQH liquid with two chiral edge modes
of opposite spin. A constriction in the middle reflects only
the inner edge mode, while the outer one is transmitted. We
assume that the single-particle interchannel scattering is
negligible [25]. The two chiral edge modes are described
by the Hamiltonian

H 2 ¼
Z

dx

� X
i¼1;2

við@x�iÞ2 þ 2V@x�1@x�2

�
; (13)

where �i (i ¼ 1; 2) are the (chiral) bosonic fields for the
outer and inner edge mode, respectively, vi ¼ vF;i þUi,

where vF;i and Ui are their Fermi velocity and intraedge

mode interaction, respectively, and V is the interaction
between the two modes.
As in the � ¼ 1 case, electrons tunnel into the IQH edge

from a lead. We assume that the electrons couple only to
the outer (i ¼ 1) edge mode. However, due to the inter-
mode interaction, the eigenmodes ofH 2 are combinations
of charge excitations on both edge modes. Therefore, the
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injected electron is decomposed into two eigenmodes [in-
dicated as (1) and (2) in Fig. 1(b)]. For simplicity, let us
consider the case v1 ¼ v2 � v. In this case, the charges of
the two eigenmodes are Q� ¼ ðq�;�q�Þ, where q� ¼ e

2

(the two components of Q� are the charges on the outer
and inner edge modes, respectively), moving at velocities
u� ¼ v� V. The faster even (þ) mode reaches the point
contact first. It then splits into two e

2 packets, one moving to

the right and the other reflected to the lower, left-moving
edge. Both charge packets then split again, as indicated in
Fig. 1(b) [(3)–(6)], into even (charge e

2 ) and odd (charge 0)

modes, moving at velocities u�.
The odd (Q�) mode reaches the point contact later and

splits into a�q� packet scattered to the left and a q� packet
transmitted to the right. Thus, as in the � ¼ 1 case, the net
effect (after a sufficiently long time) is the transmission of
a single electron (charge e) to the right. The intermediate
charge fractionalization can be detected by measuring
either the finite frequency noise spectrum of the trans-
mitted or reflected currents or by performing a time-
resolved measurement, similar to the one described in the
� ¼ 1 case.

The finite frequency noise spectra in the transmitted and
reflected currents Sr;tð!Þ can be calculated very similarly

to Eq. (10). The result is (assuming eVlead � !)

St;rð!Þ ¼ 2ej�t;rð!Þj2 coth
�
eVlead

2T

�
Itun; (14)

where Itun is the tunneling current from the lead, and

�tð!Þ ¼ cosð!�~T
2 Þ and �rð!Þ ¼ sinð!�~T

2 Þ are the Fourier

transformed transmission and reflection coefficients, re-
spectively. �~T ¼ ‘ð 1

u�
� 1

uþ
Þ, where ‘ is the total length

of the IQH edge from the lead to the detector.
In the more general case where v1 � v2, other values of

q� can be obtained. The analysis in this case is straightfor-
ward, but slightly more involved, and will be presented
elsewhere.

Conclusions.—We propose ways to create and detect
fractional charges on chiral edges of IQH liquids. The
main advantage of using IQH edges for this purpose is
their high controllability. In the proposed experiments,
electrons are injected into IQH edges and ‘‘split’’ due to
Coulomb interactions into fractionally charged packets. In
the � ¼ 1 setup, this occurs as a result of interactions
between counterpropagating edge modes. In the � ¼ 2
case, it occurs due to interactions between modes of the
same chirality. (The latter case generalizes naturally to any
� � 2 [26].) In all cases, the fractionalization is temporary,
and, after a sufficiently long time, a charge unity object is
recovered. However, the fractional charges can be mea-
sured directly by using time-resolved or finite frequency
measurements.
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