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An exact description of the complete jamming landscape is developed for a system of hard discs of

diameter �, confined between two lines separated by a distance 1þ ffiffiffiffiffiffiffiffi
3=4

p
<H=�< 2. By considering all

possible local packing arrangements, the generalized ensemble partition function of jammed states is

obtained using the transfer matrix method, which allows us to calculate the configurational entropy and

the equation of state for the packings. Exploring the relationship between structural order and packing

density, we find that the geometric frustration between local packing environments plays an important role

in determining the density distribution of jammed states and that structural ‘‘randomness’’ is a non-

monotonic function of packing density. Molecular dynamics simulations show that the properties of the

equilibrium liquid are closely related to those of the landscape.
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The properties of a wide variety of materials, including
liquids, glasses, crystals, and granular materials, depend on
the way the particles pack. Bernal [1] originally used
random packings of ball bearings to study the structure
of liquids and coined the term random close packing (RCP)
to describe the most dense random arrangement of spheres.
Subsequently, the potential energy landscape [2] (PEL) has
become an important paradigm used to describe the role of
particle packing in both the thermodynamics and dynamics
of many of these systems [3,4]. In this approach, each
configuration of the liquid is represented as a point in the
high-dimensional,N-body, potential energy function of the
system that can be uniquely mapped to the closest me-
chanically stable packing or inherent structure [5]. For a
system with a soft potential, an inherent structure repre-
sents a local potential energy minimum. For a hard particle
system, an inherent structure is a collectively jammed
packing [6–8] and a local density maximum, which gives
rise to the corresponding jamming landscape (JL). The
configurations that map to the same inherent structure
can be grouped together into a local basin of attraction
and the properties of the liquid can be described in terms of
the number of inherent structures and the motion of the
system through the resulting landscape of basins and
saddle points.

It has been suggested that RCP might be related to an
ideal glass state. In the context of the JL, the configura-
tional entropy of a hard sphere system is defined as Sc ¼
ln�ð�JÞ, where �ð�JÞ is the number of collectively
jammed states with an occupied volume fraction �J, so
the ideal glass transition would correspond to a density
where the metastable liquid becomes trapped in a subex-
ponential number of basins and Sc=N ! 0. However, ob-
taining a detailed description of the JL remains a
considerable challenge. Computer simulation has been
used extensively to study packing, but different protocols
often lead to different conclusions regarding the density
distribution of inherent structures for both hard disc mix-

tures [9–11] and hard spheres [12,13]. A recent study [14]
of jammed packings also raised questions concerning the
relationship between the structure of a packing and its
density. In particular, it has been suggested that the RCP
should be replaced by a maximally random jammed state
that is more rigorously defined with respect to a set of order
parameters. The only exact analytical results available for
the entire JL are for one-dimensional [15] or quasi-one-
dimensional [16] hard particle systems where particles can
interact only with a single neighbor on each side. A recent
mean field theory [17], which finds hard sphere packings
ranging from�J ¼ 0:536–0:635, represents one of the few
analytical results describing the JL in higher dimensions.
The goal of the present work is to obtain an exact

description of the JL for a system so that we can explore
the relationship between packing structure and density. To
this end, we study a system of two-dimensional (2D) hard
discs of diameter �, confined between two hard walls

separated by a distance of 1þ ffiffiffiffiffiffiffiffi
3=4

p
<H=�< 2. In 2D,

a particle is locally jammed if it has at least three rigid
contacts that are not all in the same semicircle. However,
local jamming of all the particles is a necessary but not
sufficient condition for collective jamming because the
concerted motion of a number of particles can lead to a
collapse of the structure [7]. By confining discs to a chan-
nel with H=�< 2, we prevent particles from passing each
other and eliminate the possibility of collective rearrange-
ments involving a subset of particles leading to an unjam-
ming of the packings. The number of structures in which
all the particles are locally jammed is then equal to the
number of collectively jammed inherent structures.
However, we note that with periodic boundary conditions
in place along the axial direction of the channel, the pack-
ings are not strictly jammed [6] because global translations
of the packings involving all particles are allowed. For

H=�< 1þ ffiffiffiffiffiffiffiffi
3=4

p
, discs can only contact their nearest

neighbors, which only allows two local particle arrange-
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ments that jam and give rise to a binomial-type density
distribution of inherent structures [16].

In the range of channel diameters studied here, the discs
can contact both their first and second nearest neighbors,
leading to a significant increase in the number and struc-
tural diversity of possible locally jammed environments.
The local packing environments are identified using a
heuristic algorithm that generates new packings by making
perturbative moves of individual particles or groups of
particles, on the known jammed structures for a system

with H ¼ 1þ ffiffiffiffiffiffiffiffi
3=4

p
. Our rationale for the algorithm is

based on the observation that there are no new contacts
or interactions between particles introduced as a result of

increasing the channel width in the range 1þ ffiffiffiffiffiffiffiffi
3=4

p
<

H=�< 2 so that any new local packing arrangement

must be related to a known packing at H=� ¼ 1þ ffiffiffiffiffiffiffiffi
3=4

p

in the limit H=� ! 1þ ffiffiffiffiffiffiffiffi
3=4

p
from above.

All the local packing environments are then mapped
onto a set of 32 tiles [Fig. 1(a)] that can be combined in
a sequence, from left to right, such that the local jamming
conditions for each particle can be achieved by just con-
sidering the neighboring tiles. This allows us to use the
transfer matrix method to construct the exact partition
function for all the jammed states. Incompatibilities exist
between some of the tiles in the sense that they cannot form

a left-right pair that results in a valid, jammed packing of
the particles [Fig. 1(b)]. This results in three groups of tiles:
a set of high density tiles [tiles 1–5 in Fig. 1(a)], so called
because they appear in the high density inherent structures;
a set of low density tiles (tiles 12–16), and a set of interface
tiles (6–11). There is no direct compatibility between the
low and high density tiles except that interface tiles are
compatible with some members of both other sets, so it is
possible to mix the groups within a single packing. The
separation in the packing compatibility arises because the
two important length scales in the system, � and H, are
incongruent. Tiles 12–16 all contain a disc-disc contact
that spans the width of the channel at an angle that cannot
jam the particles in the other set of tiles.
We begin to construct the partition function by defining

the 32� 32 transfer matrix M with matrix elements

Mij ¼ CijK
nijLlij ; (1)

where Cij ¼ 1 if tiles i and j are compatible but is zero

otherwise. K ¼ expð��Þ is the absolute activity of a disc
when� is defined as the chemical potential and� ¼ 1=kT,
where T is the temperature and k is Boltzmann’s constant.
L ¼ expð�PLSHÞ, where PLS is the external longitudinal
landscape pressure applied to the ends of the channel,
rather than the pressure related to the internal vibration
of the particles which would be infinite for the jammed
states. nij and lij are the number of particles and length

associated with the addition of tile j to the right of tile i.
The definition of a temperature for a system of jammed
states is of considerable general interest [18]. However,
here we note that the configurational integral of a hard
particle system is independent of T so we are free to simply
treat temperature as a parameter conjugate to the entropy.
Furthermore, an analysis of the transfer matrix shows that
the number of states with a given N and V appear as
coefficients of the polynomial matrix elements of MNT

that can be extracted by taking the appropriate derivative
with respect to T without necessarily providing a clear
thermodynamic definition of temperature.
Taking MNT gives all the possible jammed packing

arrangements that can be formed with NT tiles. Both the
number of particles in a packing N and its volume V fluc-
tuate between different packings, so we use the generalized
ensemble partition function [19], which can be expressed

�ðPLS; �; TÞ ¼ X1

NT¼0

X32

i¼1

�NT

i ¼ X32

i¼1

1

1� �i

; (2)

where �i is the ith eigenvalue of M. The equilibrium
condition is obtained by finding P�

LS and �� such that

�ðP�
LS; �

�; TÞ ¼ 1. In the thermodynamic limit, the equi-

librium properties of the ensemble averages are over-
whelmingly determined by packings of a given N and V,
which are obtained from

�N ¼ @� ln�ðPLS; �; TÞjðPLS;�Þ!ðP�
LS
;��Þ; (3)

FIG. 1 (color online). (a) The set of tiles that represent the
local jam packed configurations. The vertices represent disc
centers and the solid lines join the centers of two contacting
discs. The small open circles identify those discs that contact the
wall. An additional 16 tiles are generated by reflecting each tile
in the plane of symmetry that runs through the axial center line
of the channel; e.g., tile 10 is generated from tile 1. (b) A
configuration constructed from tiles 20 � 1� 12. A tile is added
to the sequence by sharing the first two discs with the previous
tile, with the exception of tile 14, which only shares one disc, and
tiles 6–8, which may either simply contact the previous tile, or
share discs, depending on the nature of the neighboring tile. In
our example, tile 1 is compatible with 20 (C20;1 ¼ 1) but tile 12 is
incompatible with 1 because it causes particle overlap between
the unfilled discs (C1;12 ¼ 0). Other incompatibilities result in

discs remaining unjammed. (c) Most dense packing.

PRL 102, 235701 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JUNE 2009

235701-2



�V ¼ @PLS
ln�ðPLS; �; TÞjðPLS;�Þ!ðP�

LS;�
�Þ; (4)

and the configurational entropy

Sc ¼ kT@T ln�ðPLS; �; TÞjðPLS;�Þ!ðP�
LS;�

�Þ (5)

is the logarithm of the number of such packings. We
calculate the fraction of particles fij belonging to interfa-

ces between tiles i and j by including a factor � in the ij
matrix elementMij ¼ expð��PLSHLij þ���nijÞ, while
leaving the remaining elements, pq � ij, unchanged.
Then fij ¼ 1

�N @� ln�ðPLS; �; �; �ÞjðPLS;�;�Þ!ðP�
LS;�

�;1Þ.
All results reported here are given for a channel width of

H ¼ 1:95�. Figure 2 shows Sc=Nk, which is independent
of T, as a function of the �J over the entire range of
packing densities, except at the very extremes where it
was not numerically possible to find solutions as PLS and
� become extremely large. Both the most dense and least
dense states are nondegenerate, except with respect to
identical structures obtained by a reflection along the
axis of the channel. The most dense state, with �J �
0:80 743, consists of a repeated tile sequence of�1� 2�
10 � 20� [Fig. 1(c)], while the least dense packing is made
from alternating �15� 150� tiles, giving �J � 0:613.
The maximum in Sc occurs at �J ¼ 0:712, which also
corresponds to the density sampled by the system at PLS ¼
0 [see equation of state (EOS) in Fig. 3(a)]. The lower
density packings are sampled at negative pressures, while
the system samples deeper basins with increasing PLS.
Above �J ¼ 0:806, we see a smooth but rapid change in
the EOS as Sc dramatically decreases.

The structure of the packings is examined by measuring
the fraction of particles associated with the high density
tiles fhd, low density tiles fld, and interface tiles fint as a
function of �J [Figs. 3(c) and 3(d)]. The system can
increase �J in two ways: by replacing the more open tiles
of a set with more dense tiles from the same set, i.e.,
replacing tile 15 with tile 9; or by replacing low density
tiles with high density tiles. Figure 3(c) shows that both

these processes are occurring over the entire density range,
but we also notice that fint is always decreasing above
�J ¼ 0:64. This implies that the packings are becoming
more structurally heterogeneous and contain clusters of
high and low density tiles as their ability to mix is reduced.
By�J ¼ 0:806, most of the low density tiles remaining are
of type 9, so that the only way to increase the density
further is to eliminate the low density tiles altogether,
which results in a rapid structural crossover and the de-
crease in Sc.
Structural randomness would imply that it is equally

probable to find any given packing arrangement, on all
possible length scales. Consequently, the function � ¼
ð1=dmaxÞPd;i;jpijðdÞ lnpijðdÞ, where pijðdÞ is the probabil-

ity of finding tile j a distance d from tile i and the sums are
over all possible tile pairs and separations, should be a
maximum for the most random states. dmax is the maxi-
mum separation studied. � is a measure of the average
randomness of the packings at a given �J and is likely to
provide a good description of the liquid structure as a
function of density. Figure 4 shows the unexpected result
that randomness is not a monotonic function of �J. The
global maximum in � occurs at �J � 0:66 and it initially
decreases with increasing�J as a result of the clustering of
low and high density tiles described above. The elimina-
tion of the low density tiles then allows greater mixing
between the high density tiles, causing� to increase again
to its second maximum at �J � 0:8071.
We use event driven, molecular dynamics (MD) simu-

lations [20] to understand how the thermodynamics of the
equilibrium fluid at an occupied volume fraction � are
related to the landscape and the packings�J. The system is
decompressed in small increments from � ¼ 0:8072, us-
ing the most dense packing as the starting configuration, to
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FIG. 2. The configurational entropy per particle, Sc=Nk as a
function of occupied volume, �J. Inset: An enlargement of high
density region showing the rapid decrease in Sc=Nk associated
with the structural crossover.
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FIG. 3 (color online). (a) �J as a function of PLS. (b) �J

as a function of the equilibrium fluid � obtained from simula-
tion studies with N ¼ 996 (circles) and N ¼ 7998 (squares)
particles. (c) The fractions of particles in tile interfaces between
high density tiles, fhd ¼

P5
i;j¼1 fij (solid line), low density

tiles, fld ¼
P

16
i;j¼12 fij (dashed line), and interface tiles, fint ¼P11;16

i¼6;j¼1 fij (dot-dashed line). (d) High density enlargement

of (c).
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� ¼ 0:1. At each � studied, 100 000N collisions are used
to reach equilibrium and the data are collected over the
next 25 000N collisions, where N is the number of discs in
the simulation. 200 independent configurations from each
� are then compressed until they are jammed using a
modified version of the Lubachevsky and Stillinger [21]
(LS) algorithm that ensures H=� remains constant as the
diameter of the discs is changed (L fixed). A compression
rate @�=@t ¼ 0:04 is used. This process is not an ‘‘infi-
nitely’’ fast quench and the system is able to relax via MD
while it is compressed, but faster quench rates result in
poorly jammed states with loose discs. Figure 3(b) shows
that the average�J, obtained by quenching the equilibrium
liquid from � for systems with N ¼ 996 and N ¼ 7998
discs, displays a dramatic change in its � dependence
above � � 0:66. This change is also apparent in the EOS
[Fig. 3(a)] for the jammed system obtained directly from
the partition function. While the EOS always varies
smoothly, signifying that there is just one thermody-
namic fluid phase at all densities, the rapid change in slope
of �J coincides with the structural crossover observed in
Figs. 3(c) and 3(d).

More generally, our work highlights the importance of
understanding the role of local packing environments and
geometric frustration in determining the properties of hard
particle packings, and its relationship to packing random-
ness. Anikeenko et al. [13,22] also observe competition
between the ‘‘quasiperfect’’ tetrahedra of the disordered
packings and the crystalline arrangements of hard spheres.
This suggests frustration may be a generic feature of pack-
ings and that a tiling approach may be useful in enumerat-
ing inherent structures [23]. We also find that Sc is expo-
nential in the number of particles over the entire density
range of �J, which is consistent with Donev et al. [11],
who used computer simulation to show that this is the case

for binary mixtures of hard discs in the bulk. Finally, the
complete knowledge of the JL for a system, along with an
understanding of local packing, will allow us to directly
test the relationships between the landscape, kinetically
facilitated dynamics [24], geometric frustration [25], and
the glassy dynamics of liquids.
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