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Exponential Growth of Nonlinear Ballooning Instability
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Recent ideal magnetohydrodynamic (MHD) theory predicts that a perturbation evolving from a linear
ballooning instability will continue to grow exponentially in the intermediate nonlinear phase at the same
linear growth rate. This prediction is confirmed in ideal MHD simulations. When the Lagrangian
compression, a measure of the ballooning nonlinearity, becomes of the order of unity, the intermediate
nonlinear phase is entered, during which the maximum plasma displacement amplitude as well as the total
kinetic energy continues to grow exponentially at the rate of the corresponding linear phase.
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The ballooning instability is a pressure gradient driven
mode in magnetized plasma that is localized in the unfa-
vorable curvature regions of magnetic field lines [1-3]. The
ballooning instability is a ubiquitous, fundamental process
[4] that is involved in many phenomena in natural and
laboratory magnetized plasmas with high B values. Here,
B is the ratio of plasma and magnetic pressures. Relative to
other magnetohydrodynamic (MHD) instabilities (e.g.,
[5,6]), the nonlinear behavior of ballooning instability is
less well understood. There is renewed interest in nonlinear
ballooning due to its possible roles in edge localized modes
(ELMs) in tokamaks [7-9] and the substorm onset process
in Earth’s magnetotail [10—12]. Early reduced MHD simu-
lations of high- tokamak plasmas indicate the formation
of a singular current sheet in the final nonlinear state of a
ballooning instability which had evolved from a linear
mode with very low toroidal mode number n (n = 1)
[13]. More recently, 3D resistive MHD simulations of
nonlinear ballooning instability were applied to model
high- B disruptions in tokamaks [14,15]. Analytical theory
has been developed for nonlinear ballooning growth of a
marginally unstable configuration in the early nonlinear
regime [16—18]. Analytical theory of the intermediate non-
linear regime of ballooning instability has been developed
lately to better understand simulations and experiments
[19-21].

The onset of type-I ELMs in tokamaks is well correlated
to the breaching of linear ideal MHD ballooning instability
boundaries [9]. Filamentary structures and their localiza-
tion in the unfavorable curvature region of the tokamak
edge have been routinely observed in striking optical im-
ages from recent Mega Amp Spherical Tokamak (MAST)
experiments [22-24]. These filamentary structures are
often associated with the structure of linear ballooning
instabilities due to their strong resemblance. However,
these filaments are relatively long lived and persist well
into the nonlinear stage of evolution. The physics mecha-
nism underlying such a close connection between the non-
linear filamentary structures and the nascent linear
instabilities is not obvious.
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Our recent theory and simulations of nonlinear balloon-
ing instability may provide a more rigorous interpretation
of such a phenomenological connection. As predicted from
a recent nonlinear ideal MHD theory [21], a perturbation
evolving from a linear ballooning instability will continue
to maintain its linear mode structure during the intermedi-
ate nonlinear phase. Consequentially, the mode continues
to grow exponentially in the nonlinear regime with the
same growth rate as the linear mode. The existence of
such an exponential nonlinear growth phase has been con-
firmed in our ideal MHD simulations, which is the focus of
this Letter.

Different phases of ELM evolution may relate to differ-
ent linear and nonlinear regimes of ballooning instability.
To describe the different nonlinear phases, we introduce
two small parameters given by
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Here, k) and k; are the dominant wave numbers of the
perturbation parallel to and perpendicular to the equilib-
rium magnetic field, respectively; & is the plasma displace-
ment produced by instability, and L., is the equilibrium
scale length (which is used later as the normalization
length in our theory).

The linear structure and growth rates of ballooning
instabilities can be determined using an asymptotic expan-
sion of the linearized ideal MHD equation in terms of n !
[2,3,25]. The mode structure in the fastest varying direc-
tion perpendicular to the magnetic field is given by n~!,
which is the scale of the dominant wavelength. At lowest
order in n~!, the ballooning mode is described by two
coupled one-dimensional ordinary differential equations
along each field line, which together with proper boundary
conditions, determines the local eigenfrequency or local
growth rate as well as the local mode structure along the
equilibrium magnetic field as a function of magnetic flux
surface, field line, and radial wave number. At higher order
in n7!, a global eigenmode equation, the envelope equa-
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tion, which uses information from the local mode calcu-
lations, governs the global growth rate and mode structure
across magnetic surfaces. In axisymmetric equilibria, the
global growth rate is given by the most unstable value of
the local growth rate with stabilizing corrections of order
n~'. As shown earlier [16-20] and in this work, the prop-
erties of linear ballooning instability are crucial to the
construction and understanding of the theory of nonlinear
ballooning instability.

The perturbation amplitude of the nonlinear ballooning
mode, measured by & (~|&|), can be compared to the
characteristic spatial scales of its linear mode structure.
In the early nonlinear regime, the filament scale |£| across
the magnetic flux surface is comparable to the mode width
A, in the most rapidly oscillating direction, |&| ~ A, ~
n~! [16-18]. In this regime, the nonlinear convection
across the flux surface is small relative to the mode width
Ay in that direction. The dominant effect of the nonline-
arities is to modify the radial envelope equation describing
mode evolution across the magnetic surface. Here, ¥ and
« are the flux and field line labels, respectively, which are
later used to define the equilibrium magnetic field. As the
mode continues to grow, it enters the intermediate non-
linear regime, in which |&] ~ Ay ~ n~'/2; the plasma
displacement across the magnetic flux surface becomes
of the same order as the mode width in the same direction
[19,20]. In this regime, effects due to convection and
compression are no longer small. Nonlinearities due to
convection and compression, together with nonlinear
line-bending forces, directly modify the ‘“local” mode
evolution along the magnetic field line. In the late non-
linear regime, the ballooning filament growth may exceed
the scale of the pedestal width. Eventually, these balloon-
ing filaments could detach from edge plasma and propa-
gate into the scrape-off-layer region, as indicated from
recent experiment [23]. In this work, we consider the
physics of the intermediate nonlinear phase and leave
discussion of the late nonlinear regime for subsequent
work.

The linear to early nonlinear regime of the ballooning
instability of the pedestal may correspond to the initial
development of type-I ELMs. Earlier theory attempted to
explain the collapse onset phase of ELMs by invoking a
finite timelike singularity associated with the early non-
linear ballooning instability of a marginally unstable con-
figuration (“Cowley-Artun” regime) [16-18]. Such a
scenario, however, has yet to be confirmed by direct
MHD simulations, possibly due to the rather limited range
of validity for that regime. In contrast, there is a good
agreement between the solutions of the intermediate non-
linear regime equations and results from direct MHD
simulations for both the case of a line-tied g mode [20]
and the ballooning instability of a tokamak (as shown in
this Letter). This regime could become particularly rele-
vant for application to ELMs as the width of the transport
barrier (or pedestal) region is comparable to the mode
width of the dominant ballooning instability.

In the following, the theory of the intermediate nonlinear
regime of the ballooning instability is briefly reviewed. A
detailed calculation can be found in [21]. We then des-
cribe the comparison between the theory prediction and
direct MHD simulations of the ballooning instability in a
tokamak.

The nonlinear theory of ballooning modes can be con-
veniently developed in the Lagrangian formulation of the
ideal MHD model [26]

Po Vor - & _vo[@ n (By - Vol‘)z]
JY 2J?
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 Vr- [70 v0(7° : Vor)] 2
where r(ry, 1) =1y + &(ro, 1), Vo= 09/0ry, J(ret) =
|Vor|. Here, r, denotes the initial location of each plasma
element in the equilibrium, & is the plasma displacement
from the initial location, and J(ry, f) is the Jacobian for the
Lagrangian transformation from r, to r(ry, 7); pg, po, and
B, are the equilibrium mass density, pressure, and mag-
netic field, respectively. We consider a general magnetic
configuration that can be described by B, = V¥, X
Vyay in a nonorthogonal Clebsch coordinate system (W,
«p, ly), where W is the magnetic flux label, « the field
line label, and [, the measure of field line length. The
corresponding coordinate Jacobian is given by (VoW X
Voag - Volp) ™' = Byl .

The intermediate nonlinear regime is defined by the
ordering & ~ O@(n~'/2) [19,20]. In this regime, the plasma
displacement & can be expanded as a single series in n /2

= e
E(nWy, nay, I, 1) = z;" ’/z(eij% + T;§6+1)/2
=

+BE) (3)

where e, = (Vyay X B)/B?, e, = (B X V,¥,)/B.
Here and subsequently, we drop the subscript “0” in the
equilibrium MHD fields py, pg, and B for convenience.
The spatial structure of the perturbation quantities is de-
termined by the conventional ballooning theory ordering;
the plasma displacement & and the Lagrangian Jacobian J
are functions of the normalized coordinates (¥, «, [),
where ¥ = \/nV,, a = nay, [ = 1.

Evolution equations for the ideal MHD plasma displace-
ment in the intermediate nonlinear regime can be obtained
using a perturbation theory in & ~ n~ /2 < 1. These equa-
tions are given by [21]

[‘P + é‘:;ll/zr plellzatzgip/g - -Ei(érll}z’ é‘:|1|/2)] =0, (4)

pB2a2E] , — Ly(£), &l ) =0, 5)

where 9, = (9/91)y,, [A, B] = 0yAd,B — 9,AdyB, L,
(L)) is the perpendicular (parallel) component of the local
linear ballooning operator [17,21]. The structure of Eq. (4)
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indicates that the solution satisfies the following general
form

ple  Po2el, = L1}, €, + NV + €6, L1, (6)

vyhere N(P, 1, 1) is a function of the distorted flux function
V=V + f}l'/z, field line coordinate / and time. A particu-

lar choice is N(W, 1, r) = 0, which implies that solutions of
the linear local ballooning mode equations continue to be
solutions of the nonlinear ballooning Eqs. (4) and (5)
formally. The nonlinear contributions to Egs. (4) and (5)
vanish for any nonlinear solution that assumes the linear
ballooning mode structure in Lagrangian coordinates. As a
consequence, global quantities of the perturbation, such as
the maximum magnitude of plasma displacement and the
total kinetic energy, grow exponentially at the growth rate
of the linear phase, even in the intermediate nonlinear
stage.

This theoretical prediction has been confirmed in recent
direct MHD simulations of nonlinear ballooning instability
in a tokamak using the NIMROD code [27]. The simulation
starts with a small perturbation to a toroidal tokamak
equilibrium generated with the Equilibrium and Stability
Code (ESC) solver [28] (Fig. 1). The equilibrium has a
circular shaped boundary with major radius Ry = 3 and
minor radius a = 1 (all quantities are in SI units). The
pressure  profile is pedestal-like: uop(x) = p, +
h,tanh[(x, — x)/L,], where p,=0.045, h, = 0.044,
x, =07, L, =0.05, x =yV;/Vr,, and ¥y (Vg,) is
the toroidal flux (at boundary). The safety factor ¢ is
monotonically increasing: ¢ = qo[1 + (g./q0 — 1)x*],
with g, = 1.05, g, = 3. The magnetic field at the mag-
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FIG. 1. The finite element mesh of poloidal domain based on a

tokamak equilibrium generated using the ESC solver. R and Z
are the cylindrical coordinates; a is the minor radius. The rings
of grid lines approximate contours of constant equilibrium
pressure. The mesh has 20 X 128 (radial X poloidal) grid points
with fifth order polynomial basis functions in each direction.

netic axis is By = 1. The initial perturbation is dominated
by an n = 15 Fourier component in the toroidal direction.
The perturbation is advanced using the standard set of ideal
MHD equations (with resistivity 7 = 0) in the NIMROD
simulation [27]. We also advance the ideal MHD plasma
displacement vector as an extra field in Eulerian coordi-
nates using

9,&(r, 1) +u(r, 1) - VE(r, 1) = u(r, 1) (7

where u(r,7) is the velocity field, 9, = (9/d¢),, and
V = 9/dr. We then calculate the Lagrangian compression
V, - &€ from the Eulerian tensor V£ using the identity

Vo §=Tr(Vpg) =TI -VE ™' -VEL  (®)

Both the maximum plasma displacement |£|,,, and the
maximum Lagrangian compression (Vg * &) Of the en-
tire simulation domain evolve at the same linear growth
rate during the phase 107, < r < 307,. Here, the Alfvén
time 74 = a,/mop /B, where p is the mass density. When
the Lagrangian compression (V * &), becomes of order
unity, the perturbation has evolved into the intermediate
nonlinear phase, which is characterized by the ordering

£-Vo~Vy- E~AGEY + A1 ~ 1. 9

However, the maximum plasma displacement itself con-
tinues to grow exponentially with the same growth rate of
the linear phase of the mode well into the intermediate
nonlinear phase. This behavior is demonstrated in Fig. 2,
which is consistent with the special solution of the analytic
theory [21]. The sudden enhanced growth of the
Lagrangian compression V, - £ in Fig. 2 above the inter-
mediate nonlinear regime may reflect the fact that the
matrix (I — V&) may become nearly singular during the
nonlinear phase, even though the Eulerian compression V -
& remains finite. For the case shown in Fig. 2, the tokamak
minor radius is a = 1, and the pressure pedestal width is
Lpeq ~ 0.1. As the Lagrangian compression (Vj * &)ypax >
1, the mode passes through the intermediate nonlinear
phase, and the maximum plasma displacement | &, sur-
passes the pedestal scale length L.4. At this point, the
analytical theory developed in Ref. [21] no longer applies.

In summary, direct numerical simulations of the full
ideal MHD model have confirmed the prediction from a
recently developed analytic theory for the ballooning mode
growth in the intermediate nonlinear regime. Both theory
and simulations have demonstrated that a perturbation that
evolves from a linear ballooning instability can continue to
grow exponentially at the same growth rate in the inter-
mediate nonlinear stage, and maintain the filamentary
mode structure of the corresponding linear phase described
in Lagrangian coordinates. This may explain why in ex-
periments, the nonlinear type-1 ELM filaments strongly
resemble the structure of a linear ballooning mode, and
linear analyses have often been able to match and predict
the observed mode structures of ELMs [9,29]. 1t is likely
that those type-I ELM filaments observed in optical images
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FIG. 2. Top: Growth of the maximum amplitude of plasma
displacement |£&|,,,x normalized by minor radius a (solid line)
and growth of the maximum Lagrangian compression (V-
&)max (dashed line) calculated from a NIMROD simulation. The
time is normalized by the Alfvén time 7,. The horizontal and
vertical dashed lines mark the intermediate nonlinear regime as
determined by the ordering V, - & ~ 1. Bottom: Growth of the
total kinetic energy (solid line) and the kinetic energy of the n =
15 Fourier component (dashed line). The vertical dashed line
marks the intermediate nonlinear regime in time. Both vertical
axes are in logarithmic scales.

are in fact consequences of the nonlinear evolution of
ballooning instability, whose close connection to its linear
mode properties can indeed be more rigorously estab-
lished. Such an insight from theory could have a practical
significance as it allows a convenient and accurate inter-
pretation of the nonlinear filaments observed in ELM ex-
periments as well as for future designs of active ELM
control.

Our analytical model focuses on the nonlinear growth of
the ballooning filament in the ideal MHD regime. This
study is an important step toward the construction of a
more relevant two-fluid MHD model for the dynamics of
nonlinear ballooning and ELM filaments. The two-fluid
effects on nonlinear ballooning instability have yet to be
fully elucidated and will be the subject of future work.
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