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The confinement of plasmas by magnetic fields with nonaxisymmetric shaping can be degraded or

destroyed by the breakup of the magnetic surfaces through effects that are intrinsic to the shaping. An

efficient perturbation method of determining this drive for islands was developed and applied to stellarator

equilibria.
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A central requirement in magnetic confinement fusion is
to balance the pressure force with the Lorentz force, as
described by the ideal magnetohydrodynamic (MHD)
equilibrium condition rp ¼ j� B. When the pressure
gradient is nonzero, both the magnetic field B and the
current density jmust lie on the constant pressure surfaces,
since B � rp ¼ 0 and j � rp ¼ 0. The existence of spa-
tially bounded magnetic surfaces, which means a function
pðrÞ exists such that B � rp ¼ 0, is only topologically
possible when these surfaces are toroidal. In an axisym-
metric plasma equilibrium, as in an ideal tokamak, the
existence of magnetic surfaces is assured. However, this
is not the case if the torus is asymmetric. Nevertheless,
nonaxisymmetric plasma shaping has benefits. For ex-
ample, experiments using plasma equilibria with strong
nonaxisymmetric shaping (the stellarator concept) have
shown immunity to the catastrophic loss of plasma equi-
librium, called disruptions, and can sustain magnetic sur-
faces without a net plasma current. The benefits of
nonaxisymmetric shaping are of increasing importance as
fusion energy research moves from confinement scaling
studies to the broader issues required for a successful
demonstration of fusion power [1].

A constraint and major challenge on nonaxisymmetric
shaping is that magnetic surfaces be maintained, which is a
long-standing question in stellarator design [2]. The helical
path followed by the magnetic field lines as they encircle
the torus can resonate with the nonaxisymmetric shaping to
split the magnetic surfaces into islands and stochastic
regions. Resonances are defined by the rotational transform
� of a magnetic field line, which is the average number of
poloidal (short way) transits of the torus a field line makes
per toroidal transit. IfN is the number of toroidal periods of
the nonaxisymmetric device, then natural resonances of the
system occur on magnetic surfaces on which � ¼ n=mwith
m an integer and n an integer multiple of N.

The breakup of magnetic surfaces in a given equilibrium
can be studied using codes such as PIES [3] and HINT [4].
Approximate nonaxisymmetric equilibria can be calcu-
lated with far less computational effort using the VMEC

code [5], which exploits the assumption of nested magnetic
surfaces. VMEC extremizes the plasma energy W ¼RðB2=2�0 � pÞd3r by varying the shape of the magnetic
surfaces while holding the rotational transform �ðsÞ and the
pressure pðsÞ fixed. In this code the normalized toroidal
flux is used as the surface label, 0 � s � 1, so the toroidal
flux enclosed by a magnetic surface is sFTð1Þ with FTð1Þ
the toroidal magnetic flux enclosed by the outermost mag-
netic surface. The VMEC equilibrium code has become the
worldwide standard for calculating nonaxisymmetric equi-
libria but does not address the critical issue of the quality of
the magnetic surfaces, which can be characterized by the
fraction of toroidal flux not occupied by island chains and
stochastic regions.
In this Letter, we show that any set of magnetic surfaces

that define an approximate equilibrium, such as the sur-
faces found by VMEC, can be used to construct a more exact
equilibrium with the plasma boundary unchanged. To
shield out the island producing error fields, ideal MHD
allows for localized surface currents at the rational sur-
faces, and these surface currents determine the size of the
magnetic islands that would arise if the flux surface topol-
ogy were allowed to break.
The magnetic surfaces given by VMEC do not exactly

solve force balance, but the deviation can be found using
quantities that are obtained from VMEC. In an equilibrium
plasma with magnetic surfaces, B � rs ¼ 0 and j � rs ¼
0. Magnetic angles can be chosen so the magnetic field has
the representations [5–9]

B ¼ �F0
TðsÞffiffiffi
g

p
�
@r

@�
þ �ðsÞ @r

@�

�
; (1)
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B ¼ IðsÞr�þ JðsÞr�þ �srs; (2)

where 0 � � � 1 is a poloidal and 0 � � � 1 is a toroidal

angle, �ðsÞ is the rotational transform,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðs; �; �Þp

< 0
is the coordinate Jacobian, and I and J are the poloidal
and toroidal currents. In Eq. (1), the prime denotes d=ds.
The function �sðs; �;�Þ is given by �s ¼ gs�B � r�þ
gs�B � r�, where the metric tensor component gs� �
ð@r=@sÞ � ð@r=@�Þ. By taking the curl of the covariant
representation of B, Eq. (2), and crossing it with the first
representation, Eq. (1), one finds that j�B ¼ ½F0

TðI0 þ
�J0Þ= ffiffiffi

g
p þB � r�s�rs. If the equilibrium were exact,

j� B would equal rp ¼ p0rs on each s surface. That
is, an approximate equilibrium solver, such as VMEC,
fails to satisfy exact force balance by an amount �fs �
ðrp� j�BÞ � ð@r=@sÞ, where

�fs ¼ p0 � p0
n þB � rð�p � �sÞ: (3)

The nominal pressure profile pnðsÞ is defined by p0
n ¼

F0
TðI0 þ �J0Þ=V 0ðsÞ where the s derivative of the volume

inside a constant-s surface is V 0ðsÞ � H ffiffiffi
g

p
d�d�, and the

function �p is defined by

B � r�p ¼ p0
nð1� V 0=

ffiffiffi
g

p Þ: (4)

Consequently, using VMEC output, the force imbalance
�f ¼ �fsðs; �; �Þrs can be calculated surface by surface.

It is natural to assume the force imbalance associ-
ated with the VMEC approximation is sufficiently small to
treat the imbalance as a perturbation. Equilibrium pertur-
bation theory is a well-studied subject in the context of
ideal MHD stability and is reviewed in Ref. [10]. If the
energy W is varied by displacing the magnetic surfaces
to rðs; �; �Þ þ �ðs; �; �Þ while holding �ðsÞ and pðsÞ
fixed, then �W ¼ �1W þ �2W. The first-order perturbed
magnetic field is given by B1 ¼ r� ð� �BÞ. The varia-
tion that is linear in the displacement � is �1W ¼ Rðrp�
j� BÞ � �d3r. The part that is quadratic in � has the form
�2W ¼ � 1

2

R
� �F ½��d3r where F is the Hermitian

ideal MHD force operator acting on the displacement �.
Codes that examine the ideal MHD stability of a plasma
assume that the equilibrium is exact, rp ¼ j�B, so that
�1W ¼ 0, and seek to minimize �2W. If a solution can be
found that makes �2W negative, then the plasma is un-
stable. Here we wish to minimize �W assuming �1W is
small, but nonzero, and that �2W is positive, so there are no
instabilities.

The ideal MHD stability code CAS3D [9] treats general
plasma equilibria and extremizes �W by a Galerkin
method. A nondimensional representation of the normal
displacement is used, �s � � � rs ¼ jrsj�n. The extrem-
ization leads to a system of linear equations for the Fourier
harmonics of the scalar � components, in which the matrix
is given by �2W and the right-hand side by �1W. The
formalism allows discontinuities in the resonant �s har-
monics at each rational surface �ðsmnÞ ¼ n=m. The jump in

a resonant �s harmonic gives the surface current that flows
on the s ¼ smn rational surface to keep a magnetic island
from opening [11]. The magnetic field Bsurf that would be
produced by this surface current is equal and opposite to
the magnetic perturbation that is driving the formation of
an island at s ¼ smn but produced by currents away from
the resonant rational surface smn. Letting

�mn �
����� @@s

�
B1 � rs
B � r�

������
mn

(5)

be an (mn) Fourier harmonic, and kfk be the jump of a
quantity f across the rational surface, then the component
of Bsurf which is normal, n ¼ rs=jrsj, to the resonant
surface approximately is [6]

b?mn ¼ jBsurf � njmn � 1

2

ðF0
TÞ2

j ffiffiffi
g

p jB2

�mn

2�m

I
Bjrsjd�d�:

(6)

Without an approximation, the Fourier harmonics b?mn are
computed by the BNORM code [12], which takes a general
geometry into account. The width W of the island that
would be produced at the rational surface in the absence of
the surface current is

W
aminor

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�������� 2R

m�0
ffiffiffi
s

p
aminor

b?mn

B

��������
s

; (7)

with R and aminor the major and minor radii of the plasma.
This procedure for studying magnetic islands was im-

plemented in Ref. [11] using CAS3D to investigate the
islands driven by a given displacement of the plasma
edge for a W7-X variant. A similar concept has been
developed for perturbed tokamaks in the IPEC code
[13,14]. For stellarator cases the basic idea was realized
in the NSTAB code [15,16], without giving an estimate for
the island width from the discontinuous normal
displacement.
If the shape of the outermost plasma surface is fixed, the

drive of islands in stellarator equilibria by the natural
resonances can be determined by extremizing �W for an
approximate equilibrium, for which �1W � 0, with the
boundary conditions that �s vanish at the plasma edge,
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FIG. 1. PIES computation for an NCSX-type fixed-boundary
equilibrium at h�i � 0:04. Half of the triangular cross section is
shown.
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s ¼ 1, and be regular at s ¼ 0. Extremizing �W for an
approximate equilibrium with general boundary conditions
at the plasma edge, so that the plasma boundary may
change, gives the general solution for which the jumps in
�s at the rational surfaces describe the drive for islands.

To illustrate this method, consider a fixed-boundary
finite-plasma-� equilibrium representing the National
Compact Stellarator Experiment (NCSX), which has
been designed at Princeton Plasma Physics Laboratory
[17,18]. In Fig. 1 the island structure is shown which was
computed by the PIES code in its fixed-boundary version for
an NCSX-type case at � � 2�0p=B

2 ¼ 0:04. The same
plasma boundary and the PIES rotational transform and
pressure profile formed the input for the VMEC code, which
was used in its fixed-boundary version, too. The pressure
profile was slightly modified by narrow, differentiably
connected, flat regions which were introduced at the prin-
cipal natural resonances. The equation for the parallel
current, B � rðjk=BÞ ¼ �r � j?, gives an infinite jk ¼
j �B=B at rational surfaces unless either the resonant
Fourier harmonic of the coordinate Jacobian or the pres-
sure gradient p0

n is zero. On the natural rational surfaces,
� ¼ n=m, the resonant Fourier harmonic of the Jacobian is,
in general, not zero, so the plasma pressure gradient must
vanish.

According to Eqs. (5)–(7), the square of the island width
is proportional to the jump in the resonant harmonic of the
flux derivative of the normal perturbed magnetic field at the
respective resonant surface. Figure 2 shows the dominant
resonant harmonics of B1 � rs as calculated by the CAS3D

code for the NCSX-type case of Fig. 1. At their respective
resonant surfaces, the resonant harmonics are not smooth,
as seen, for example, in the (5, �3) harmonic (solid line)
near s � 0:5. In Table I, the approximate b?mn of Eq. (6) and
the BNORM results are compared for the NCSX-type case
considered here. The quality of the approximate b?mn of

Eq. (6) is found to be good. The island width data show a
good agreement of PIES and CAS3D results. In this bench-
mark study, the single-processor time requirement of the
CAS3D code suite is smaller than that of PIES by a factor of

about 4. In the CAS3D code suite, the basic VMEC run was
done in a radially highly resolved, and thus time-
consuming way, taking �80% of the total time. The
CAS3D part proper takes only 8% of the total time, which

is beneficial for an iterative process involving only the
CAS3D part for determining a healed equilibrium without

or with smaller islands.
A recent application of the perturbed-equilibrium

method to a finite-� Wendelstein 7-X case (W7-X, [19])
complements the PIES-CAS3D benchmark [20]. The W7-X
optimized stellarator was designed and is currently being
built at the Institut für Plasma Physik, IPP. With its auxil-
iary coil system, W7-X will also provide for operation
regimes in which the influence of low-order islands inside
the plasma can be experimentally assessed. The magnetic
topology of such a case was computationally studied in a
h�i ¼ 0:05 W7-X equilibrium with the 5=6 natural island
chain inside the plasma. The plasma boundary obtained
from a free-boundary PIES calculation was analyzed with
the CAS3D code retaining the plasma boundary found by
PIES. With the CAS3D code suite the widths of the flat

pressure region and the island have been matched. Then
the CAS3D island width exceeds the PIES result of W ¼
0:027 m by 1 mm.
The accuracy with which the perturbed equilibrium ap-

proximates the true equilibrium has been checked [6] for
the case of axisymmetry, where no islands can arise, and
has also been benchmarked against a helically perturbed
cylindrical equilibrium [21]. The island drive predicted by
the CAS3D perturbed-equilibrium code has been success-
fully benchmarked with the IPEC code, which has a similar
logic but is restricted to perturbations to axisymmetric
equilibria [22].
If one chooses the external magnetic fields so the jumps

in the resonant normal displacement harmonics vanish,
then the drive for islands vanishes throughout the plasma.
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FIG. 2. Dominant resonant harmonics of B1 � rs versus nor-
malized toroidal flux from a CAS3D calculation for the NCSX-
type equilibrium of Fig. 1. Legend for harmonics: 3=5 solid; 3=6
dotted; 3=7 short-dashed; 3=8 long-dashed; 6=9 dot-dashed. The
vertical dashed lines indicate the resonant surfaces.

TABLE I. Resonant harmonics of the normal component of the
surface current field at resonant surfaces, � ¼ n=m: b?mn from the
general-geometry BNORM code [12] compared to the approxi-
mation of Eq. (6). Island width, W , from the PIES and CAS3D

codes, normalized to the minor radius aminor ¼ 0:32 m.

Resonance b?mn (10�4 T) W =aminor

� ¼ n=m BNORM Equation (6) PIES CAS3D

3=5 6.455 6.913 0.110 0.103

3=6 0.878 0.865 0.041 0.040

3=7 0.210 0.211 0.023 0.019

3=8 0.606 0.676 0.040 0.036

6=9 1.253 1.243 0.050 0.040
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The result of an example CAS3D calculation is shown in
Fig. 3. A cylindrical plasma was deformed by two helical
perturbations with different helicities to constitute a
general-geometry case with islands. An inhomogeneous
boundary condition is used for �s, so that the resonant
harmonics become continuous at the respective reso-
nances. As a result, the nondeformed plasma is restored
to a very good approximation.

In summary, we have demonstrated that numerical tools
originally developed for studying MHD stability also can
be used as perturbed equilibrium codes to increase the
accuracy of nonaxisymmetric plasma equilibria and to
assess the importance of magnetic islands in those equi-
libria. This approach promises a computationally efficient
and theoretically insightful approach to both the design of
stellarator plasmas with good magnetic surfaces, and the
response of these plasmas to externally applied error fields.
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FIG. 3. A CAS3D computation with inhomogeneous problem
and inhomogeneous boundary conditions finds the normal dis-
placement that restores a perfect cylinder equilibrium from a
three-dimensionally distorted cylindrical case. Labels: a for the
(3,�1) harmonic inside the � ¼ 1=3 surface, b outside; c for the
(2, �1) harmonic inside the � ¼ 1=2 surface, d outside.
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