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We use a simple method to generate toroidal droplets and study how they transform into spherical

droplets. The method relies on the viscous forces exerted by a rotating continuous phase over a liquid

which is extruded from an injection needle; the resultant jet is forced to close into a torus due to the

imposed rotation. Once formed, the torus transforms into single or multiple spheres. Interestingly, we find

there are two routes for this process depending on the aspect ratio of the torus. For thin tori, classical

hydrodynamic instabilities induce its breakup into a precise number of droplets. By contrast, for

sufficiently fat tori, unstable modes are unable to grow, and the torus evolves through a different route;

it shrinks towards its center to coalesce onto itself, to finally form a single spherical droplet.

DOI: 10.1103/PhysRevLett.102.234501 PACS numbers: 47.20.Dr, 47.55.db, 47.55.Iv

Bubbles and droplets are common to our everyday life.
They make rain and clouds and are essential constituents of
many of the health care and food products we often use and
eat. Bubbles and droplets are indeed ubiquitous in nature,
and they have a spherical shape. Surface tension gives
them their perfect spherical shape by minimizing the sur-
face area for a given volume [1]. As a result, any means of
dispersing a gas or a liquid in a fluid inevitably results in
spherical bubbles or droplets. By contrast, generating fluid
objects with nonminimal surface shapes, such as a torus, is
far more complicated and still remains a formidable chal-
lenge. Despite the difficulty, this can be achieved by using
external forces. For example, if rotated at sufficiently high
speed, a freely suspended droplet can exhibit a variety of
nonspherical shapes, including the torus; Plateau showed
this experimentally [2] although it was not until about a
century later that his observations were understood [3] and
refined [4]. A bubble can also adopt the shape of a torus if
vibrated [5] and dolphins make fascinating vortex rings,
which have a toroidal shape [6,7]. Further examples are
provided by the free fall of a droplet in an immiscible fluid
[8,9] or by the impact of a droplet with a superhydrophobic
surface [10]. Inevitably, the toroidal fluid generated by any
of these means is unstable and always transforms into a
spherical fluid once the external force vanishes. However,
the details of this collapse are not known, reflecting in large
measure the experimental difficulties in generating toroidal
droplets under well-controlled conditions.

In this Letter, we report on a novel procedure to generate
toroidal droplets and on how they transform into spherical
droplets. Our technique enables precise control of the
aspect ratio of the torus, which is in turn the relevant
parameter determining its stability. For thin tori, the clas-
sical hydrodynamic instability causing the breakup of a
long fluid cylinder, or jet, is also responsible for the
breakup of the torus. In this case, however, only modes
with a wavelength commensurate with the torus length can
grow. Interestingly, for sufficiently fat tori, no unstable
modes can develop, and the torus shrinks towards its center

to finally coalesce onto itself. This shrinkage is always
present irrespective of the aspect ratio of the torus, but
becomes the dominant mechanism for sufficiently fat tori.
Our results provide a simple way to make these unusual
droplets and elucidate the way they transform, driven by
surface tension, to the lowest energy spherical shape.
We inject a liquid through a metallic needle into a

rotating bath containing a viscous continuous phase. As a
result of the viscous drag exerted by the outer fluid over the
extruded liquid, a curved jet forms at the exit of the needle,
as shown in Fig. 1(a). However, if the rotational velocity,
vo, is not large enough, the jet breaks before the torus can
be formed, as shown in Fig. 1(b). This suggests that the
relevant time scales for the formation of a torus with our
technique are the breakup time of the jet [11], tb �
�oatip=�, with atip the inner radius of the needle, �o the

viscosity of the outer liquid, and � the interfacial tension,
and the time required to perform a full rotation, T ¼
2�=! ¼ 2�Rtip=vo, with Rtip the distance from the needle

to the rotation axis and ! ¼ vo=Rtip the angular speed. By

balancing these two time scales, we obtain the velocity
needed to form a torus, vo ¼ 2�ðRtip=atipÞð�=�oÞ, which
we can recast in terms of a capillary number: Cao �
�ovo=� � 2�Rtip=atip. This expression provides a means

to predict whether a torus would form using our experi-
mental method. To test its validity, we vary Rtip and vo for

different values of �o and visually identify when a torus is
formed. We summarize our observations in terms of Cao
and Rtip=atip, as shown in Fig. 1(d). The line in this plot

separates regions where a torus forms from regions where
it does not form; it passes through the origin and has a slope
of 5.5, which is close to 2�, consistent with our
expectations.
Our method provides great flexibility in tuning the as-

pect ratio of the torus. On the one hand, its initial overall
size, which we quantify by its initial overall radius, R0,
schematically shown in Fig. 1(c), is determined by the
position of the injection needle with respect to the rotation
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axis; as a result, R0 ¼ Rtip. On the other hand, the injection

flow rate and injection time determine the volume of the
torus and thus the initial dimension of its tube, a0. To show
this, we made a series of tori all with R0 ¼ 8 mm, for
different injection times, ti, while keeping the injection
flow rate equal to qi ¼ 50 ml=hr; in this way, we change
the infused volume, V ¼ qiti. We obtain that a0 increases

with V=R0, as shown in the inset of Fig. 1(d); this depen-
dence quantitatively agrees with what would be expected
for a torus, whose volume is equal to V ¼ 2�2a20R0, as

shown by the line in the same figure. Thus, our method also
provides a simple means to precisely vary the aspect ratio
of the torus, R0=a0, by independently changing R0 and a0.
After the toroidal droplet is formed, we remove the

needle and allow the system to evolve in time while record-
ing the evolution with a CCD camera. For a viscosity ratio
of the inner to the outer liquid of �i=�o ¼ 1=30, we
observe that the torus breaks into a precise number of
droplets; this number depends on its initial aspect ratio,
as shown by the series of images in Fig. 2, where we show
snapshots for a wide range of R0=a0. The first row of
images corresponds to the initial state, right after the
needle is removed, the second row of images corresponds
to a time slightly before breakup, and the third row of
images corresponds to the end of the process, right after
breakup had occurred. We obtain the same number of
droplets for a well-defined range of aspect ratios, implying
that the number of breakup points in the torus, n, as a
function of R0=a0 is a step function, as shown in Fig. 3;
each step is associated with a certain range of aspect ratios,
all for the same n.
The observed breakup into a specific and discrete set of

droplets implies that only wavelengths which are integer
fractions of the overall length of the torus can induce its
breakup. Consequently,

2�R0 ¼ n� (1)

with � the wavelength associated to the mode inducing the
breakup. Controlling R0=a0 thus provides a means to con-
trol the number of wavelengths that fit inside the torus, and,
consequently, it allows us to control the number of droplets
that result from its breakup.
Interestingly, we observe that the torus often shrinks

before it breaks up into drops. For a given initial aspect
ratio, the overall radius of the torus decreases until breakup
occurs; this explains the presence of steps in Fig. 3.
Furthermore, we observe that the torus breaks when the
aspect ratio reaches the leftmost point of the step. For

a1                         b1                        c1                        d1                        e1                        f1                         g1                        h1                        i1

a3                         b3                        c3                        d3                        e3                        f3                         g3                        h3                        i3

(a1)          t = 0s   (b1)          t = 0s   (c1)           t = 0s   (d1)          t = 0s   (e1)           t = 0s   (f1)           t = 0s   (g1)          t = 0s   (h1)           t = 0s   (i1)           t = 0s

(a2)          t = 7s   (b2)         t = 21s  (c2)         t = 22s   (d2)        t = 23s   (e2)         t = 19s   (f2)         t = 22s   (g2)        t = 12s   (h2)         t = 14s   (i2)         t = 13s

(a3)        t = 17s   (b3)         t = 32s  (c3)         t = 37s   (d3)        t = 38s   (e3)         t = 42s   (f3)         t = 38s   (g3)        t = 26s   (h3)         t = 33s   (i3)         t = 28s

FIG. 2. Snapshots for the time evolution of a torus (from top to bottom) for different aspect ratios. The scale bar in (a1) corresponds
to 5 mm. In these experiments, the injected liquid is glycerin and the liquid in the continuous phase is silicone oil (�i=�o ¼ 1=30).
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FIG. 1 (color online). (a) Formation and (b) breakup of a
curved jet. In this experiment, the rotation speed is insufficient
and the torus does not form. Instead, the jet breaks up before the
torus is generated. (c) Geometrical parameters of a torus: Tube
radius, a0, and overall radius, R0. (d) Diagram for the formation
of toroidal droplets in terms of the capillary number of the outer
liquid, Cao, and Rtip=atip, where Rtip is the distance between the

needle and the rotation axis and atip is the inner radius of the

needle. The different symbols correspond to different values of
�o: (e,r) 30000 cP, (�,d) 10 000 cP, (4,m) 5000 cP. The line
corresponds to Cao ¼ 5:5Rtip=atip and separates regions where

the torus forms (open symbols) or does not form (closed sym-
bols). We use water for the inner liquid and silicone oil for the
outer liquid and always add the surfactant sodium dodecyl
sulphate above its critical micelle concentration to decrease
the interfacial tension to � ¼ 4 mN=m [22].
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example, a torus with an aspect ratio of �10 (see arrow in
Fig. 3) shrinks until the aspect ratio becomes �8:3 corre-
sponding to the leftmost point in the step; at this point, the
torus breaks. Based on this observation, we hypothesize
that when the torus reaches the leftmost point of each step,
the mode inducing the observed n breakup corresponds to
the mode with the largest growth rate possible; among all
unstable modes, there is one which is the fastest [12], and
we believe it is this mode that is responsible for the
breakup. Based on this hypothesis, a torus will shrink until
n wavelengths of this fastest mode can fit in the available
contour length. As a result, irrespective of the aspect ratio,
it is always the same mode that causes the breakup of the
torus, with the only difference being the number of wave-
lengths that can fit in its contour length. Consistent with
this hypothesis, the leftmost points of each step in Fig. 3
scale linearly with the aspect ratio, as shown by the linear
fit in the same figure. We obtain that n � 0:57R0=a0,
which we can rewrite as ðn=R0Þa0 ¼ ð2�=�Þa0 � 0:57
using Eq. (1); this provides the wavelength of the fastest
unstable mode in our experiments. Remarkably, the clas-
sical stability analysis of Tomotika for a viscous, cylindri-
cal jet inside another viscous liquid [13] predicts that the
unstable mode with largest growth rate corresponds to
ð2�=�Þa0 ¼ 0:54 for �i=�o ¼ 1=30; this value agrees
with our experimental results, confirming our hypothesis.

We note, however, that for low aspect ratios, n can
actually be equal to zero; there is no breakup in these
cases, implying that the torus simply shrinks to coalesce
onto itself, as shown in Fig. 2 (a1-a3). To inquire about this
shrinking process, we recall that for fluid cylinders such
that �i=�o ! 0 or �i=�o ! 1, the unstable mode with
the largest growth rate corresponds to � ! 1 [13]. This
implies that only breakups with small n are expected in
these situations. Consistent with this expectation, we only
see breakups with n ¼ 1 for a low viscosity ratio,�i=�o ¼
1=30 000, as shown in Figs. 4(a)–4(c). In this case, there is
only a single wavelength growing in the torus, and it
corresponds to the fastest unstable mode that can grow.

Imposing a high viscosity ratio between the outer and
inner liquid is thus ideal to explore what happens for small

n. We perform a series of experiments with tori of varying
aspect ratio and monitor the time evolution of the tube
radius both where it is largest (swell), as, and where it is
smallest (neck), an, normalized by the initial tube radius,
as shown in Fig. 5(a). For large aspect ratios, we find that
as grows with time while an decreases with time; these
behaviors are symmetric with respect to the initial state,
as ¼ an ¼ a0. If an decreases, as must increase, since the
volume of the torus is conserved. Interestingly, for smaller
aspect ratios, this symmetrical behavior is not retained. In
these cases, the torus appreciably shrinks with time, as
shown in Fig. 5(b), where we plot the inner radius of the
torus, RinðtÞ, schematically shown as an inset, normalized
with the initial inner radius, as a function of time. We
observe that the torus shrinks towards the center irrespec-
tive of the aspect ratio. However, this shrinkage is more
important as R0=a0 decreases, thus causing the asymmetric
behavior of an and as with respect to a0; the observed

(a)     t = 0s   (b)           t = 5s   (c)       t = 10s

a as n

(d)     t = 0s   (e)          t = 20s  (f)        t = 40s

FIG. 4 (color online). Time evolution of a torus made of water
immersed in silicone oil (�i=�o ¼ 1=30 000, � ¼ 4 mN=m).
(a)–(c) Breakup of the torus through classical hydrodynamic
instabilities. (d)–(f) Shrinkage and coalescence behavior for
aspect ratios R0=a0 & 2. The scale bar corresponds to 5 mm.
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FIG. 5. (a) Time evolution of the swell (closed symbols) and
neck (open symbols) radii normalized with the initial radius, for
different values of the aspect ratio: (w,q) R0=a0 � 11:1, (m,4)
R0=a0 � 5:6, (d,�) R0=a0 � 3:6, (c,x) R0=a0 � 2:6, (j,h)
R0=a0 � 2:2, (b,v) R0=a0 � 2:1, (r,e) R0=a0 � 1:9, (., 5)
R0=a0 � 1:4. (b) Time evolution of the torus dimension, quanti-
fied through RinðtÞ normalized with Rinð0Þ, for different values of
the aspect ratio [symbols as in (a)]. Inset: Initial velocity of the
shrinkage process as a function of a0. The velocity is indepen-
dent of a0 and equal to ð34� 6Þ �m=s. In all these experiments,
�i=�o ¼ 1=30 000 and � ¼ 4 mN=m. The schematic shows a
torus with Rin � a0.

R /a0 0

FIG. 3. Number of breakup points in the torus, n, as a function
of its initial aspect ratio, R0=a0. The line corresponds to a linear
fit of the leftmost points in the steps. We obtain n � 0:57R0=a0.

PRL 102, 234501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JUNE 2009

234501-3



shrinkage enhances the growth of as while diminishes the
decrease of an, which eventually even increases with time.

In fact, for R0=a0 & 2, there is no breakup, and the torus
relies on the shrinkage mechanism in order to transform
into a single spherical droplet; the torus simply shrinks
towards its center to coalesce onto itself, as shown in
Figs. 4(d)–4(f) for �i=�o ¼ 1=30 000. As a result, there
is no neck anywhere along the contour of the torus and both
as and an increase with time, as shown in Fig. 5(a). Inter-
estingly, the condition R0 � 2a0 corresponds to a torus
having a tube radius equal to Rin, as shown in the schematic
of Fig. 5(b). Based on this measure, the contour length of
such torus would be 2�Rin ’ 2�a0. This condition is
reminiscent of the classical limit of Plateau and Rayleigh
[14,15] separating stable and unstable modes in a linear
tube; only those modes with a wavelength larger than 2�a0
are unstable. We emphasize, however, that the connection
between our experiments and this classical result only
holds if Rin is taken as the relevant dimension: When Rin &
a0, we find that no unstable mode grows in the torus, which
simply shrinks to finally form a single spherical droplet.

To quantify this shrinkage behavior, we measure the
initial speed, v, of the process and plot the result as a func-
tion of a0 in the inset of Fig. 5(b). We observe that the
speed of the shrinkage process does not appreciably de-
pend on a0. Instead, the speed is constant and equal to
ð34� 6Þ �m=s. To account for this value, we balance the
two relevant forces in the process: Surface tension, which
provides the driving force, and a viscous drag per unit
length, which opposes the shrinkage process. We estimate
the drag on our tori by considering the drag on a cylinder
[16], F=L ¼ 4��ov= lnð7:4=ReÞ, where Re ¼ �va0=�o

is the Reynolds number and L is the length of the cylinder.
From the condition F=L��, we get v¼140�m=s, which
is a factor of�4 larger than the experimental result [17]. In
addition, since the drag only depends on a0 through the
logarithm of Re�1 and Re � Oð10�6Þ, v should not de-
pend on a0, consistent with our experimental observations.

Our results provide insight on how a toroidal droplet
transforms into a spherical droplet suggesting an interest-
ing interplay between the two relevant length scales in the
problem, the radius of the contour length, R0, and the
radius of its circular cross section, a0. The classical hydro-
dynamic breakup competes with a shrinkage mechanism in
order to induce the transition to the energetically favored
spherical shape. For thin tori, classical hydrodynamic in-
stabilities induce breakup, while for fat tori, only the
shrinkage mechanism can exist causing the subsequent
shape transformation. We hope that our simple interpreta-
tions provide the starting point for more detailed hydro-
dynamic calculations; among other things, we believe
these calculations should implicitly consider the curvature
of the torus, as well as the time dependent character of �,
which results from its shrinkage.

We also emphasize that our results rely on a novel and
simple method to generate toroidal droplets of precise
aspect ratio, which could serve as a basis to make toroidal

objects for a wide range of studies, for example, to analyze
geometrical frustration in the curved space of a torus [18].
Additionally, as with spherical droplets, which have in-
spired insight into a wide range of systems, including the
atomic nucleus [19], our toroidal droplets might also serve
as a model for other physical systems. An important issue
still to be resolved pertains to the overall stability of the
torus; a possible direction in this respect might include the
use of complex fluids, such as colloidal suspensions
[20,21].
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