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When a periodic 1D system described by a tight-binding model is uniformly initialized with equal

amplitudes at all sites, yet with completely random phases, it evolves into a thermal distribution with no

spatial correlations. However, when the system is nonlinear, correlations are spontaneously formed. We

find that for strong nonlinearities, the intensity histograms approach a narrow Gaussian distributed around

their mean and phase correlations are formed between neighboring sites. Sites tend to be out of phase for a

positive nonlinearity and in phase for a negative one. Most impressively, the field correlation takes a

universal shape independent of parameters. These results are relevant to bosonic gas in 1D optical lattices

as well as to nonlinear optical waveguide arrays, which are used to demonstrate experimentally some of

the features of this equilibrium state.
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The tight-binding approximation is one of the simplest
models that predict band structure and ballistic motion in
periodic systems [1]. Using a tight-binding model with
disorder, P.W. Anderson was able to predict and study
the effect of localization in disordered lattices [2]. A non-
linear version of the tight-binding model, better known as
the Discrete Nonlinear Schrödinger Equation (DNLSE),
has been used to study nonlinear evolution in periodic
systems, initially in the context of periodic molecular and
mechanical systems [3], and extensively in recent years to
describe nonlinear propagation in optical waveguide latti-
ces [4,5], as well as matter waves in light-induced lattices
[6]. In particular, the DNLSE explains the formation of
nonlinear intrinsic localized modes, also known as discrete
solitons [7] or discrete breathers [8].

Here, we report on a new phenomenon that occurs in
periodic systems, in the limit of strong nonlinearity. What
we find is that when the system is initialized with random-
phase fields, it evolves into particular distributions with
well-defined stationary statistical properties. Most interest-
ingly, the field correlation function and the distribution of
phases assume universal forms independent of the exact
value of the nonlinear parameter. The resulting distribution
induces a dynamic structure with several intriguing
properties.

This system is particularly relevant to recent theory [9]
and experiments [10] with ultracold bosonic matter in a
one-dimensional potential. These studies show that phase
coherence builds up when bosonic matter, prepared ini-
tially in a highly number-squeezed Mott-insulating state, is
allowed to interact via a sudden reduction of the lattice
potential. These works investigated the interesting dynam-
ics related to the buildup of coherence in the superfluid
regime, but have not discussed the unique properties of the
equilibrium state that is eventually reached and its univer-
sality. We show that this state can be interrogated experi-
mentally by the study of the equivalent optical system.

In Fig. 1, we show the results of an optical experiment in
a waveguide array that motivated this study. Light with
uniform intensity yet random phases was injected into a
large number of waveguides in a periodic AlGaAs wave-
guide lattice [4,5,11]. The light source was a pulsed optical
parametric amplifier, producing 1.2 ps pulses at a wave-
length of 1530 nm with a 1 kHz repetition rate. The laser
beam was shaped to couple to 15 waveguides, and the
spatial phase of each input was randomized using a
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FIG. 1 (color online). Experimental measurement of output
light intensities from a waveguide array, when input fields
with equal amplitudes, yet random phases, are coupled to several
adjacent waveguides. The measured intensity values of many
random-phase realizations are shown as histograms for linear
propagation (blue squares) and high-intensity, nonlinear propa-
gation (red circles). The output intensity distribution is
exponential-like in the linear propagation and becomes narrow,
Gaussian-like in the nonlinear case. Inset: Two sets of measure-
ments for an input with the same phase realization after linear
(top panel) and nonlinear (bottom panel) propagation, showing
that the intensity fluctuations are reduced in the nonlinear case.
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computer-controlled spatial light modulator. The intensity
at the output end was measured, and the histograms of
intensity values obtained from many repeats of the experi-
ment with different random-phase realizations are shown
for both low-intensity (linear) and high-intensity (nonlin-
ear) light. While linear propagation produced exponential-
like distribution of intensities, as expected for summing of
many random-phase inputs, the nonlinear propagation
yielded a much narrower distribution around the average
intensity, as shown in Fig. 1. Increasing the optical power
led to the narrowing of the output distribution. Note that for
both measurements, the counts at low intensity values are
underestimated because of scattered light and instrumen-
tation noise.

To investigate this behavior, we have modeled the prob-
lem using the DNLSE. While we use here the notations of
optics, our results hold in general for all other systems
described by the DNLSE. Light evolution in a periodic
array of weakly coupled waveguides is described by

i
dan
dz

¼ Cðan�1 þ anþ1Þ þ �janj2an; (1)

where an is the amplitude of the mode in the nth wave-
guide, C is the coupling coefficient to the nearest neigh-
bors, and � is the nonlinear coefficient, positive (negative)
for focusing (defocusing) nonlinearity. We shall consider
the situation where light is injected into the array with
uniform amplitudes janj ¼ a0, yet with completely uncor-
related, random phases. It is convenient to use the normal-
ized equation,

i
dun
d�

¼ ðun�1 þ unþ1Þ þ �junj2un; (2)

where � ¼ zC, un ¼ an=a0, and � ¼ �a20=C. With this

normalization, the input intensities are all uniform with
Inð0Þ ¼ unu

�
n ¼ 1.

Consider first the linear problem, i.e., � ¼ 0. As might
be expected, after a certain distance, mixing of the different
input fields leads to an output pattern with fluctuating
intensities. Figures 2(a)–2(c) shows results of numerical
simulations of Eq. (2) for various properties of the fields
after propagating a distance of � ¼ 10 in an array with
N ¼ 256 sites. Periodic boundary conditions are used to
avoid edge effects. The results shown are averaged over
500 realizations with different random initial fields.
Figure 2(a) shows the intensity histogram; it follows an
exponential law, PðIÞ ¼ expð�IÞ, as expected for random
fields. Figure 2(b) shows the field correlations Ck ¼Pðunu�nþk þ u�nunþkÞ=2N demonstrating, as could be ex-

pected, that the fields at different sites do not correlate.
Finally, Fig. 2(c) shows the histogram of phase differences
between neighbors, �n ¼ �n ��nþ1, with �n ¼ argðunÞ
the phase of the field un. These phases are uniformly
distributed.

We now repeat the simulations with nonlinearity, and
we will be interested mostly in the limit of strong nonline-

arity; results for � ¼ �20 and for � ¼ �200 are given in
Figs. 2(d)–2(f). Two differences from the linear case are
obvious. First, the intensity histograms, shown in Fig. 2(d),
now converge around the average intensity value of 1, with
a width that shrinks with the nonlinear parameter. The
distribution seems to fit well a Gaussian distribution with
PðIÞ ¼ exp½�ðI � 1Þ2=2�2�, and it is independent of the
sign of the nonlinearity.
The second major effect of the nonlinearity is the in-

duced spatial field correlations. Most interestingly, the
correlation function [Fig. 2(e)] takes a shape that is inde-
pendent of the nonlinearity value, and is sensitive only to
its sign. It is described well by exponential decays, Ck ¼
ð�1Þk expð��kÞ for positive (focusing) nonlinearity and
Ck ¼ expð��kÞ for the negative case. Note that the corre-
lation is only visible in the fields—the intensities remain
uncorrelated; intensity correlations show a diminished
peak at k ¼ 0 and a uniform background. These field
patterns are consistent with the known properties of modu-

FIG. 2 (color online). Simulation results of the DNLSE with
uniform intensities and random phases. (a) Intensity histogram,
(b) field correlation, and (c) phase-difference histogram for a
linear system (� ¼ 0), exhibiting exponential intensity distribu-
tion and uncorrelated fields and phases. (d) Intensity histograms
for � ¼ �20 (blue circles) and � ¼ �200 (red circles). The
distributions are narrower at higher nonlinearities, yet indepen-
dent of the sign of �. (e) The universal field correlation function
is identical for both nonlinear values, but depends on their sign:
blue for positive (focusing, �> 0), red for negative nonlineari-
ties. (f) Phase-difference histograms also approach a universal
distribution, concentrating around � for positive nonlinearity
and 0 for the negative case. The theoretical lines in (d)–(f) are
predictions of Eqs. (7) and (8).
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lation instability in such systems: Staggered (unstaggered)
fields are stable in positive (negative) nonlinearity ar-
rays [12].

Since the intensities become more uniform at high non-
linearities, the field correlation functions are dictated by
the variations of phases between neighboring sites. In
Fig. 2(f), we show the histograms of these phase differ-
ences for positive and negative nonlinearities. While in the
former, neighboring waveguides are most likely to be out
of phase, as the distribution peaks at �, in the latter,
neighboring waveguides tend to be in phase. This distribu-
tion of phases also attains a constant profile at high-
nonlinearity values.

The field correlations and the intensity distributions are
closely related. This can be deduced from the conserved
quantities,

H ¼ 1

2
�
X

I2n þ
Xðunu�nþ1 þ u�nunþ1Þ (3)

A ¼ X
In; (4)

which represent the equivalent Hamiltonian and the total
photon number, respectively.

From these it is easy to show that

�

4
�2ð�Þ þ C1ð�Þ ¼ H0 (5)

is also constant. Here, � ¼ ð�I2n=N � 1Þ1=2 is the standard
deviation of the intensities. Since our initial condition are
of uniform intensities, �2ð0Þ ¼ 0, and random phases,
C1ð0Þ � 0, then H0 ¼ 0; hence,

�

4
�2ð�Þ ¼ �C1ð�Þ: (6)

Equation (6) predicts that the signs of C1 and � are differ-
ent, as indeed is observed in Fig. 2. For weak nonlinearity
(� � 1), when the distribution deviates only slightly from
exponential, a small correlation is formed with C1 ¼
��=4. However, as the nonlinearity increases, Eq. (6)
predicts that the intensity distribution has to narrow
down, since necessarily jC1j< 1.

To relate the phase and intensity fluctuations, we have to
study the statistical properties of the DNLSE. Such inves-
tigations were carried out by Rasmussen et al. [13], and
extended later by Rumpf [14]. They were mostly interested
in the conditions for the generation of localized structures.
With our initial conditions, it can be shown that localized
structures are not formed, but we can use the same formal-
ism to derive the probability distributions for phase and
intensities.

In essence, the state of maximal entropy
S½pðI1; . . . IN; �1; . . . �NÞ� ¼ �R

p lnp
Q

dIid�i can be
derived by the variational problem �ðS� �A� 	H �


R
pÞ ¼ 0, where �, 	, and 
 are the appropriate

Lagrange multipliers [14]. In the limit of � � 1, it can
be shown that

Pðunu�nþ1 þ c:c:Þ � 2
P

cosð�nÞ [15]. This
is also consistent with the observation that the intensities

are uncorrelated, and at high nonlinearities, they are close
to their average value of 1. With this approximation, also
known as the quantum phase model [15], the intensities
and phases are separable, and their distributions are derived
to be

pIðIÞ ¼ 
1 exp

�
�	�

2
ðI � 1Þ2

�
(7)

p�ð�Þ ¼ 
2 exp½�2	 cosð�Þ� (8)

with 
1, 
2 appropriate normalization constants and 	 �
�0:533 is the solution of 4	

R
cosð�Þp�ð�Þd�þ 1 ¼ 0,

where the sign is selected to match the sign of �. The
phase distribution is then maximized at � ¼ � (� ¼ 0) for
positive (negative) �, respectively. Note that these univer-
sal phase distribution functions, which are shown as lines
in Fig. 2(f), are independent of the value of the nonlinear-
ity. They lead to the universal correlation function that
decays with Ck=Ckþ1 ¼ �4	 as shown in Fig. 2(e).
The strong nonlinear effect described in this Letter in-

troduces strong deformations to the lattice. One way to
characterize these deformations is to investigate the trans-
port properties of a weak probe field, which propagates in
the lattice simultaneously with the strong field that induces
the nonlinear effect. The probe field does not interfere with
the strong field, but it is driven by the potential �In �
Vnð�Þ, where In is the intensity of the strong beam at nth
waveguide. The propagation of the probe field can be
described by a linear set of equations, in which Vn is an
external potential. Such an approach can yield additional
insight by translating the problem into a more familiar
linear evolution. In our case, the equivalent linear problem
is that of diagonal disorder: The potential Vn fluctuates
from site to site, and it is also changing dynamically with � .
While we have shown above that the variations in inten-

sities tend to diminish at high nonlinearities [� ¼
ð	�Þ�1=2], the variations in the induced potential, i.e.,
�� actually increase. The array becomes effectively
more disordered: A stationary (i.e., �-independent) struc-
ture with this level of disorder would have been charac-
terized by a localization length that is narrower than the
lattice spacing. However, this increase in disorder is also
accompanied by faster dynamics: The induced pattern
changes faster at higher nonlinearities. The induced poten-
tial map Vnð�Þ is shown in Fig. 3, together with the
correlation maps Yðk; ��Þ ¼ �n

R
d�Vnð�ÞVn�kð� � ��Þ.

Note that while at a given � the potentials (and intensities)
at adjacent sites do not correlate, Yðk; 0Þ ¼ �k;0, they are

correlated at other values of � . It is this dynamic potential
structure that determines the field correlations and other
peculiarities of this system.
We have simulated the simultaneous propagation of a

strong nonlinear field and a weak probe field in an array
with 1024 sites. The strong field is simulated as described
above, and the probe is launched into a single central site at
� ¼ 0. Figure 4(a) shows the width of the probe beam,

averaged over several realizations, as a function of �1=2, for
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two values of nonlinearity, � ¼ 20 and � ¼ 200. Fig-
ure 4(b) shows the probe intensity distribution at � ¼
2000. It seems that the broadening is governed mostly by
diffusive dynamics, that is, a Gaussian-like distribution

that broadens diffusively as �1=2. Indeed, dynamic disorder
that is spatially uncorrelated is known to lead to diffusive
broadening [16–18]. What we find interesting is that at
higher nonlinearities, the diffusion coefficient is actually
larger, in spite of the stronger disorder. This is most likely
the result of the faster dynamics, but it could be that the

nontrivial correlation maps also plays a role. These points
are currently under investigation.
In conclusion, we have shown that when systems de-

scribed by the DNLSE are initialized with equal ampli-
tudes yet random phases, universal field correlations are
formed in the high-nonlinearity limit. In contrast with the
thermal distribution of intensities obtained in linear propa-
gation, the intensity variations are diminished, and univer-
sal phase correlations are formed. These results are
relevant to two experimental situations; in optics, the phys-
ics of nonlinear waveguide arrays and, in quantum gases,
for systems switched from Mott insulators to superfluidity.
It is worth noting that the fact that these systems relax to
equilibrium while maximizing entropy [19] is closely re-
lated to their discrete nature. Continuous, integrable 1D
systems do not generally display ergodicity [20] and may
not be amiable to similar statistical physics analysis.
We thank E. Altman and A. Polkovnikov for illuminat-

ing discussions and R. Helsten for valuable help. This work
was supported by the German-Israel Foundation (GIF) and
the Crown Photonic Center.
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FIG. 4 (color online). The diffusion of a weak probe in the
potential induced by the high-intensity fluctuating field with � ¼
20 and � ¼ 200. (a) the averaged probe width as a function of
�1=2. (b) The averaged probe profile at � ¼ 2000.

FIG. 3 (color online). Maps of the potential Vn induced by the
fluctuating fields for (a) � ¼ 20 and (b) � ¼ 200 and the
corresponding correlation maps Yðk; ��Þ (c), (d). The maps
show a section of 40 waveguides (vertically) and a propagation
of � ¼ 1. Note the faster dynamics for the higher nonlinearity,
evident also in the correlation map. For easy viewing, the
potentials are normalized to their peaks, although the values in
(b) are about 3 times higher than in (a).
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