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The resonant interaction of laser light with atoms is analyzed from the time-dependent density

functional theory perspective using a model helium atom which can be solved exactly. It is found that

in the exact exchange approximation the time-dependent dipole shows Rabi-type oscillations of its

amplitude. However, the time-dependent density itself is not well described. These seemingly contra-

dictory findings are analyzed. The Rabi-type oscillations are found to be essentially of classical origin.

The incompatibility of time-dependent density functional theory with few-level approximations for the

description of resonant dynamics is discussed.

DOI: 10.1103/PhysRevLett.102.233001 PACS numbers: 31.15.ee, 31.70.Hq

Linear response time-dependent density functional the-
ory is widely and successfully applied to calculate absorp-
tion spectra of atoms, molecules, and solids [1]. The
predicted transitions between the ground state and singly
excited states are often remarkably accurate [2], even with
simple approximations to the exchange-correlation poten-
tial. In experiments, a resonant interaction between a laser
field and atoms or molecules is routinely used to, e.g.,
prepare the system in an excited state. The time it takes
to transfer the ground state to an excited state is half a Rabi
period (� pulse) and can (in simple cases) be calculated
using a two-level approximation (TLA; see any textbook
on quantum optics, e.g., [3]). Time-dependent density
functional theory (TDDFT) beyond linear response is, in
principle, capable of describing the entire dynamics of the
electron density nðr; tÞ exactly if the exact exchange-
correlation potential were known [4]. With the increasing
interest in real-time quantum dynamics of matter exposed
to laser light, TDDFT beyond linear response attracts more
and more attention (see [1] and references therein).

In this Letter, we analyze the resonant interaction of
laser light with atoms from the TDDFT perspective. To that
end we employ a numerically soluble one-dimensional
helium atom as a benchmark model for the corresponding
time-dependent Kohn-Sham (TDKS) calculations. We
show that the TDKS dipole indeed displays Rabi-type
oscillations which, however, are of classical origin and
that the density itself is not properly described in the exact
exchange-only approximation. The incompatibility of a
TLA with the TDKS equation in the case of resonant
interaction is also discussed.

Let us first introduce the widely used one-dimensional
model helium [5] in which both electrons move along the
laser polarization direction only. Softening the Coulomb

interaction 1=jrj ! 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
[atomic units (a.u.) are

used], we obtain for the HamiltonianHðtÞ ¼ T þ VextðtÞ þ
Vee, with VextðtÞ ¼ �2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
� 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02

p
þ EðtÞ�

½xþ x0�, T ¼ �ð1=2Þ½@2x þ @2x0 �, and Vee ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx� x0Þ2p

. Here the coupling to the laser field is
described by the electric field in dipole approximation
EðtÞ, T is the kinetic energy, and Vee is the electron-
electron interaction. We start from the spin-singlet ground
state. Since there is no spin-dependent external potential,

the state will remain a spin-singlet state, i.e., hxx0j�ðtÞi ¼
ð1= ffiffiffi

2
p Þc ðxx0tÞ½j "#i � j #"i�, with c ðxx0tÞ being symmetric

under the exchange of x and x0. The time evolution is
governed by the time-dependent Schrödinger equation
(TDSE) i@tc ðxx0tÞ ¼ HðtÞc ðxx0tÞ. The ground state en-
ergy in this system is E0 ¼ �2:238, and the first excited

spin-singlet state is at E"#
1 ¼ �1:705.

The corresponding TDKS equation reads i@t’ðxtÞ ¼
½�ð1=2Þ@2x þ vKSðxtÞ�’ðxtÞ, with

vKSðxtÞ ¼ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p þ EðtÞxþ
Z j’ðx0tÞj2dx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx� x0Þ2p (1)

in exact exchange-only approximation, the last term being
the Hartree-exchange potential vHx. In this approximation,
correlation effects are neglected, and the TDKS equation
equals the time-dependent Hartree-Fock (TDHF) equation.
The TDHF wave function is a Slater determinant,

hxx0j�ðtÞi ¼ ’ðx0tÞ’ðxtÞ½j"#i � j#"i�= ffiffiffi
2

p
, and the TDKS

density is simply given by nðxtÞ ¼ 2j’ðxtÞj2.
The linear response spectra are calculated according to

Ref. [6]. The result is shown in Fig. 1. The strongest peak is
associated with the transition between the ground state and

the first excited singlet state at ! ¼ E"#
1 � E0 ¼ 0:533,

followed by transitions to higher excited states and the first
continuum (indicated by the vertical arrow). The TDSE
spectrum also shows transitions to doubly excited states
and the corresponding continua. Such transitions are absent
in linear response TDDFT employing simple, adiabatic
exchange-correlation potentials [7].
The linear response spectrum for the ‘‘frozen’’ Kohn-

Sham (KS) ground state potential vð0Þ
KSðxÞ ¼ �2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ R½n0ðx0Þdx0�=½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx� x0Þ2p � (commonly
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called the ‘‘bare’’ KS response) is also included in Fig. 1,

showing the transitions to excited states in vð0Þ
KSðxÞ and

illustrating that vKSðxtÞ � vð0Þ
KSðxÞ shifts the peaks closer

to the correct positions.
Let us now consider a monochromatic laser beam of

resonant frequency ! ¼ E"#
1 � E0 and electric field ampli-

tude Ê ¼ !Â. Assuming that the TLA and rotating wave
approximation are valid, we expect Rabi oscillations of

frequency � ¼ Ê�10 to occur, where

�10 ¼ h�0jðxþ x0Þj�1i ¼ 2
ZZ

dx0dxc �
0ðxx0Þxc 1ðxx0Þ

is the transition dipole matrix element. Its numerical value
is 1.1. The dipole then evolves according to

dðtÞ ¼ �10 sin!t sin�t: (2)

Figure 2 shows hxiðtÞ ¼ dðtÞ=2 as it results from the TDSE,
TDKS, and frozen KS calculations. A laser field of vector

potential amplitude Â ¼ 0:0125 was ramped up over two
laser cycles and then held constant. The laser frequency

was tuned to the resonance ! ¼ E"#
1 � E0, i.e., ! ¼ 0:533

for the TDSE, ! ¼ 0:549 for the TDKS, and ! ¼ 0:492
for the frozen KS calculation (all inferred from Fig. 1). The
TDSE result shown in panel (a) displays Rabi oscillations

of the envelope of frequency � ¼ Â!�10 ¼ 0:0075, as
expected. At t ¼ �=� ’ 420 the excited state is maxi-
mally populated, and the envelope of the excursion is close
to zero. At t ¼ 2�=� ’ 840 the system is mostly in the
ground state again. A closer inspection of the TDSE result
shows that because of ionization and transitions to other
states the population of the first excited state after half the
Rabi period is only 0.975 instead of unity. The population
of the ground state after a full Rabi cycle is 0.96. In the

frozen KS calculation [panel (c)] ionization and the popu-
lation of other excited states are more pronounced. As a
consequence, the excursion envelope does not go to zero at
t ¼ �=�, and the excursion amplitude is overestimated.
The TDKS calculation in panel (b) shows oscillations of
the right amplitude. The Rabi period one infers from the
envelope oscillations is remarkably close to the exact result
in (a). For nonresonant driving the amplitude oscillations
are absent, as they should be.
Figure 2(b) suggests that Rabi oscillations are well

described within the TDKS system. If this were true, the
TDKS density should oscillate between the ground state
density and a density similar to the exact first excited state
density shown in Fig. 3. Unfortunately, this is not the case.
Examining the TDKS density at time t ’ 350 reveals that it
does not assume the shape of the exact excited state density
of Fig. 3 but rather resembles the initial density again.
Hence, despite an erroneous TDKS density we observe
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FIG. 2 (color online). Expectation values hxi vs time for a
resonant excitation with Â ¼ 0:0125 and (a) ! ¼ 0:533 for the
TDSE, (b) ! ¼ 0:549 for the TDKS, and (c) ! ¼ 0:492 for the
frozen KS calculation.
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FIG. 3 (color online). Exact ground state density n0ðxÞ=2 ¼R
dx0jc 0ðxx0Þj2 (black line, labeled ‘‘ground’’) and exact excited

state density n1ðxÞ=2 ¼ R
dx0jc 1ðxx0Þj2 (red line, labeled ‘‘ex-

cited’’). The two insets show contour plots of jc 0ðxx0Þj2 (left)
and jc 1ðxx0Þj2 (right). The signs of c 1ðxx0Þ are indicated in the
right inset.
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FIG. 1 (color online). Linear response of the He model atom as
obtained from the full TDSE (black line, labeled ‘‘TDSE’’), from
the x-only TDKS (red line, labeled ‘‘TDKS’’), and the frozen
x-only KS potential (green line, labeled ‘‘frozen’’). The vertical
arrow indicates the first ionization threshold. The inset shows a
close-up of the transitions to singly excited states.
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the Rabi-like oscillations of Fig. 2(b) in its first moment,
i.e., in the TDKS dipole. As for our two-electron system,
the exact KS orbital corresponding to the excited state

density is given by ’1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1ðxÞ=2

p
and thus, according

to Fig. 3, has no nodes; the exact KS orbital representing
this excited state density must be the ground state of a KS
potential vKS½n1�. Hence, even the exact KS potential will
not lead to a population transfer to an excited KS state but
will ‘‘guide’’ the density towards the stationary, ‘‘new’’
ground state density n1 during a � pulse. The exact
exchange-only approximation used in (1) above does not
do this. Hence, correlation is needed to describe the density
dynamics properly. Whether memory effects [8] are im-
portant in this context will be investigated in a forthcoming
paper. Note that the exact KS potential may be simply
constructed by inversion for the case of the two-electron
spin-singlet system studied here [9]. However, in order to
actually identify memory effects, more involved methods
are required, e.g., the approach proposed in Ref. [10].

Let us now investigate the origin of the Rabi-like oscil-
lations in the TDKS dipole of Fig. 2. Since it is not due to
the density dynamics corresponding to population transfer,
there must be another explanation. In order to show that the
oscillations are classical in origin, let the motion of the
center of mass of the density be approximated by the
dynamics of a point particle in an effective anharmonic
potential vðxÞ ¼ ð!2=2Þx2 þ ð�=3Þx3 þ ð�=4Þx4, with �
and � some constants. The external driver is of the form

EðtÞ ¼ Ê cos½ð!þ �Þt�; i.e., � is the detuning with respect
to!, i.e., the frequency characterizing the harmonic region
of the potential around the origin. The squared excursion
amplitude B2ð�Þ ¼ ½maxxðtÞ�2 fulfills a cubic equation
[11]. As soon as a critical driver strength is reached,
more than one real solution for Bð�Þ exists, and a disconti-
nuity develops. Figure 4 shows that the amplitude of the
TDKS dipole as a function of the laser frequency displays
exactly this feature. The classical Rabi-like oscillations can

intuitively be understood as follows: While being in the
harmonic region of the potential, the particle is resonantly
driven and thus the excursion amplitude increases.
However, with increasing excursion amplitude, the particle
inevitably senses the anharmonicity of the potential. As a
consequence, the driver is not resonant anymore and the
excursion amplitude decreases. Hence the Rabi-like oscil-
lations of the excursion amplitude seen in our TDKS
results are essentially of classical origin. Similar oscilla-
tions were observed in Josephson junctions [12].
Going back to our model helium where the TLA applied

to the interacting system j�ðtÞi ’ aðtÞ expð�iE0tÞj�0i þ
bðtÞ expð�iE1tÞj�1i accurately captures the resonant
population transfer to an excited state, the density evolves
in time according to nðxtÞ ¼ jaðtÞj2n0ðxÞ þ jbðtÞj2n1ðxÞ þ
2<fa�ðtÞbðtÞ expð�i!tÞ�nðxÞg. Here �nðxÞ ¼
h�0jn̂ðxÞj�1i is real, with n̂ðxÞ ¼ P

� ĉ
y
�ðxÞĉ �ðxÞ the den-

sity operator in second quantization with spin degrees of
freedom �. Can we use this accurate, interacting two-level
density to construct a vHxc for a corresponding two-level
KS scheme? In order to show that such an approach will
fail, we start from the fundamental equation for the deri-
vation of the extended Runge-Gross proof (see [13] or
Chap. 2 in [1]) in one dimension:

@2t nðxtÞ ¼ @x½nðxtÞ@xvextðxtÞ� þ qð½n�; xtÞ; (3)

with qð½n�; xtÞ ¼ h�ðtÞj@2xT̂ðxÞ þ @xV̂
0
eeðxÞj�ðtÞi, the

momentum-stress tensor T̂ðxÞ ¼
P

�f½@x ĉ y
�ðxÞ�@x ĉ �ðxÞ � 1

4@
2
x½ĉ y

�ðxÞĉ �ðxÞ�g, and the in-

teraction term V̂ 0
eeðxÞ ¼

P
�;�0

R
dx0 ĉ y

�ðxÞĉ y
�0 ðx0Þ �

½@xveeðjx� x0jÞ�ĉ �0 ðx0Þĉ �ðxÞ. With the analogue of (3)
for the noninteracting system and its state j�ðtÞi [leading
to the same density nðxtÞ], one finds with vKSð½n�; xtÞ ¼
vextðxtÞ þ vHxcð½n�; xtÞ for the Hartree-exchange-
correlation potential

@x½nðxtÞ@xvHxcð½n�; xtÞ� ¼ qð½n�; xtÞ
� h�ðtÞj@2xT̂ðxÞj�ðtÞi: (4)

One could now use the interacting two-level density in (4)
to construct vHxcð½n�; xtÞ. However, even if one were able
to determine aðtÞ and bðtÞ from the noninteracting system
alone (so that one has not to solve the full interacting
problem in the first place), such a TDKS treatment will
lead to wrong predictions. Note that with (3) and vextðxtÞ ¼
v0ðxÞ þ xEðtÞ the dipole acceleration of an N particle

system reads €dðtÞ ¼ �NEðtÞ � R
dxnðxtÞ@xv0ðxÞ. Here

the term depending on @xvHxcð½n�; xtÞ vanishes in accor-
dance with the zero-force theorem [1,14]. With n0ðxÞ, n1ðxÞ
symmetric and v0ðxÞ even,

R
dxn0ðxÞ@xv0ðxÞ ¼R

dxn1ðxÞ@xv0ðxÞ ¼ 0 results, and thus

€dðtÞ þ cdðtÞ ¼ �NEðtÞ; (5)

where c ¼ R
dx½@xv0ðxÞ��nðxÞ=

R
dxx�nðxÞ. Equation (5)

describes a driven harmonic oscillator which [for initial
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FIG. 4. TDKS excursion amplitude B ¼ maxx vs laser fre-
quency for a driver with Â ¼ 0:0125. Discontinuity and asym-
metric peak structure are characteristic of classical anharmonic
oscillations [11].

PRL 102, 233001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
12 JUNE 2009

233001-3



conditions dð0Þ ¼ _dð0Þ ¼ 0] does not exhibit oscillations
of the excursion amplitude as a function of the driver
amplitude, i.e., no Rabi-like oscillations. Hence, despite
using an accurate density as input, not even the dipole is
reproduced within such a two-level TDDFT. What went
wrong? It turns out that the introduction of a TLA into (3)
leads to inconsistencies between Hilbert spaces and
Hamiltonians. In order to illustrate this fact, it is sufficient
to consider the Heisenberg equation of motion for some

general, time-independent operator Ô:

@tÔHðtÞ ¼ i½ĤHðtÞ; ÔHðtÞ� ¼ ifÛ�1ðtÞ½ĤðtÞ; Ô�ÛðtÞg;
(6)

with ÔHðtÞ ¼ Û�1ðtÞÔ ÛðtÞ and ÛðtÞ ¼
T fexp½�i

R
t
0 dt

0Ĥðt0Þ�g the time-evolution operator.

Making use of (3) and introducing a TLA amounts to
calculating the commutators in expressions like (6) in the
full Hilbert space while the time evolution is performed in
a reduced Hilbert space, i.e., in our case in a two-level
subspace,

ifÛ�1
2 ðtÞ½ĤðtÞ; Ô�Û2ðtÞg ¼ ifÛ�1

2 ðtÞ1̂2½ĤðtÞ1̂ Ô�Ô 1̂ ĤðtÞ�
� 1̂2Û2ðtÞg; (7)

with 1̂ ¼ P1
k¼0 j�kih�kj, 1̂2 ¼ P

1
k¼0 j�kih�kj, and

Û2ðtÞ ¼ T fexp½�i
R
t
0 dt

01̂2Ĥðt0Þ1̂2�g. Instead, for a consis-
tent TLA

@t½Û�1
2 ðtÞÔÛ2ðtÞ� ¼ ifÛ�1

2 ðtÞ1̂2½ĤðtÞ1̂2Ô
� Ô1̂2ĤðtÞ�1̂2Û2ðtÞg (8)

holds, with a different commutator leading to a different
equation of motion. In particular, the equation for @2t nðxtÞ
is different from (3) if the Hamiltonian is restricted to a
two-level subspace [15]. Obviously, our analysis not only
applies to a TLA but to any finite-level approximation.

So far, we tried to construct vHxc by applying a TLA
to Eq. (4). On the other hand, by inversion [9] we can
determine the KS potential vKS generating exactly a given
two-level density nðxtÞ. The associated dipole acceleration
then reads €dðtÞ ¼ �R

dxnðxtÞ@xvKSð½n�; xtÞ. Subtracting
from the KS potential the physical external potential de-

fines vHxc, and we obtain €dðtÞ þ R
dxnðxtÞ@xv0ðxÞ þR

dxnðxtÞ@xvHxcð½n�; xtÞ ¼ €dðtÞ þ cdðtÞ þ R
dxnðxtÞ �

@xvHxcð½n�; xtÞ ¼ �NEðtÞ. By construction, the two-level
density leads to the correct two-level dipole acceleration.
This can be possible only if the term depending on vHxc

contributes. Otherwise, the same problem as with Eq. (5)
discussed above arises. However, a nonvanishing contribu-
tion from

R
dxnðxtÞ@xvHxcð½n�; xtÞ is possible only if vHxc

does not describe internal forces only and thus violates the
zero-force theorem [1,14]. As a consequence, the external
potentials of the interacting and the noninteracting system

cannot be kept equal. In fact, there is no local external
potential vextðxÞ that supports just two levels. Nevertheless,
a vHxc, which violates the zero-force theorem, may be
acceptable as an approximation.
In conclusion, we investigated resonant dynamics in the

exact exchange approximation for the simple but numeri-
cally exactly solvable case of a one-dimensional model
helium atom. Although the dipole shows Rabi-type oscil-
lations, the density dynamics of the population transfer
process is not properly described. As a consequence, the
dipole spectra calculated using exact exchange-only
TDDFT may be sufficiently accurate while the real-time
dynamics of the density is erroneous. The incompatibility
of few-level approximations with TDDFT to describe reso-
nant density dynamics was analyzed. Since there is an
increasing interest in strongly driven real-time quantum
dynamics of matter, the development of exchange-
correlation potentials capable of describing resonant
charge transfer is particularly important and will be the
subject of future work.
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