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We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz

point proposed by Hořava. Assuming power-counting renormalizability, foliation-preserving diffeomor-

phism invariance, and the condition of detailed balance, we show that primordial gravitational waves are

circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite

robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of

cosmic microwave background radiation and stochastic gravitational waves.
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Introduction.—For a long time, the inflationary scenario
has been regarded as an academic theory which provides
an elegant solution to conceptual problems in cosmology
such as the flatness problem, the horizon problem, and the
origin of structure of the Universe. However, the fact that
all recent cosmological observations strongly support the
inflationary scenario with high precision encourages us to
take inflation more seriously. Then, by taking into account
that inflation magnifies microscopic scales to macroscopic
ones, it is reasonable to regard inflation as a probe to
investigate physics at the Planck scale, namely, quantum
gravity.

It is widely believed that string theory is a promising
candidate for quantum gravity. However, it is premature to
discuss a Planckian regime of the Universe using string
theory. Therefore, so far, study of the trans-Planckian
effect on inflationary predictions has been phenomenologi-
cal [1,2]. In fact, there are various phenomenological mod-
els which can mimic trans-Planckian physics and lead to a
modification of the power spectrum of curvature perturba-
tions [3]. It is known that these quantitative trans-Planckian
corrections suffer from severe constraints due to the back-
reaction problem [4,5]. However, there may be more quali-
tative effects due to trans-Planckian physics. For example,
polarization of primordial gravitational waves could be an
important smoking gun of trans-Planckian physics [6,7]. In
fact, a parity-violating gravitational Chern-Simons term
which is ubiquitous in string theory can generate circular
polarization in primordial gravitational waves [8–10].
However, it has been shown that the effect of parity viola-
tion is negligibly small for slow roll inflation [11].
Recently, it is argued that sizable circular polarization
could be generated [12,13] by resorting to a peculiar
feature due to the Gauss-Bonnet term [14]. One defect in
these models is the appearance of divergence in one of the
circular polarization modes. This divergence suggests the
necessity of a consistent quantum theory of gravity.

Recently, quantum gravity at a Lifshitz point which is
power-counting renormalizable was proposed by Hořava
[15,16]. In contrast to string theory, the theory is not

intended to be a unified theory but just quantum gravity
in 4 dimensions. In this ‘‘small’’ framework, one can
discuss the trans-Planckian effect on cosmology in a self-
consistent manner. In Hořava’s formulation of quantum
gravity, the action necessarily contains a Cotton tensor,
which violates parity invariance. Hence, we can expect
circular polarization of primordial gravitational waves.
Moreover, there exists no divergence in this model. Then
the purpose of this Letter is to calculate the degree of
circular polarization during inflation and show observabil-
ity of chiral primordial gravitational waves which is a
robust prediction of quantum gravity at a Lifshitz point.
Quantum gravity at a Lifshitz point.—The quantum

gravity proposed by Hořava can be characterized by an-
isotropic scaling at an ultraviolet fixed point x ! bx, t !
b3t, where b, x, and t are a scaling factor, spatial coordi-
nates, and a time coordinate, respectively. This scaling
guarantees the renormalizability of the theory [16].
Because of the anisotropic scaling, the time direction plays
a privileged role. In other words, the spacetime has a
codimension-one foliation structure in which leaves of
the foliation are hypersurfaces of constant time. Since the
spacetime has the anisotropic scaling and the foliation
structure, the theory is not diffeomorphism invariant but
invariant under the foliation-preserving diffeomorphism
defined by ~xi ¼ ~xiðxj; tÞ, ~t ¼ ~tðtÞ. Here, indices i; j; k; . . .
represent spatial coordinates.
To describe the foliation, it is convenient to use

Arnowitt-Deser-Misner decomposition of the metric ds2 ¼
�N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ, where N, Ni, and

gij are the lapse function, the shift function, and the three-

dimensional induced metric, respectively. In order for the
theory to be unitary, the number of time derivatives should
be at most two in the action. The renormalizable kinetic
part is then given by

SK ¼ 2

�2

Z
dtd3x

ffiffiffi
g

p
NðKijKij � �K2Þ; (1)

where Kij is the extrinsic curvature of the constant time

hypersurface defined by Kij ¼ ð _gij � Nijj � NjjiÞ=2N and
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K is the trace part of Kij. Note that � and � are dimen-

sionless coupling constants which run according to the
renormalization group flow. Hereafter, we assume � has
already settled down to the infrared fixed point � ¼ 1 at the
beginning of inflation although we keep � in subsequent
formulas.

The most crucial assumption of Hořava’s theory is the
detailed balance condition

SV ¼ �2

8

Z
dtd3x

ffiffiffi
g

p
NEijGijklE

kl; (2)

where we have defined
ffiffiffi
g

p
Eij ¼ �W½gij�=�gij with some

functional W. Here we introduced the inverse of De Witt
metric Gijkl ¼ ðgikgjl þ gilgjkÞ=2� �gijgkl. The renor-
malizability of the theory requires Eij must be third order
in spatial derivatives. The requirement uniquely selects the
Cotton tensor

Cij ¼ "iklrkðRj
l � 1

4R�
j
l Þ; (3)

where �ijk denotes the totally antisymmetric tensor and Rij

and R are the three-dimensional Ricci tensor and Ricci
scalar, respectively. Including relevant deformations, we
have

W ¼ 1

w2

Z
d3x

ffiffiffi
g

p
�ijk

�
�m
il @j�

l
km þ 2

3
�n
il�

l
jm�

m
kn

�

þ�
Z

d3x
ffiffiffi
g

p ðR� 2�wÞ; (4)

where �i
jk and �w are Christoffel symbols and the three-

dimensional ‘‘cosmological constant,’’ respectively. Here
we have introduced new coupling constants w and �. Note
that the first two terms lead to the Cotton tensor. Thus, we
obtain the potential part of the four-dimensional action
[16]

SV ¼
Z

dtd3x
ffiffiffi
g

p
N

�
� �2

2w4
CijCij þ �2�

2w2
"ijkRilR

l
kjj

� �2�2

8
RijR

ij

þ �2�2

8ð1� 3�Þ
�
1� 4�

4
R2 þ�wR� 3�2

w

��
; (5)

where a stroke j denotes a covariant derivative with respect
to spatial coordinates. In the above action (5), the coeffi-
cient of scalar curvature R is �2�2�w=8ð1� 3�Þ, and then
the gravitational constant becomes negative in the low
energy limit unless �w=ð1� 3�Þ> 0.

In addition to this gravity sector, we consider the action
for an inflaton �

SM ¼
Z

dtd3x
ffiffiffi
g

p
N

�
� 1

2
@��@��� Vð�Þ

�
: (6)

Let us assume slow roll inflation and take the slow roll
limit. Then we can replace the action (6) with the effective

cosmological constant ��; namely, we have SM ¼
�R

dtd3x
ffiffiffi
g

p
N ��.

Thus, the total action is given by S ¼ SK þ SV þ SM.
The total action S breaks the detailed balance condition
softly [16]. It should be emphasized that the total action S
reduces to the conventional Einstein theory at low energy.
Primordial gravitational waves.—Let us consider the

background spacetime with spatial isotropy and homoge-
neity ds2 ¼ �dt2 þ aðtÞ2�ijdx

idxj, where a is the scale

factor. Using this metric ansatz, we can get the Friedmann
equation with � ¼ 1:

_a2

a2
¼ �2

12

�
��� 3�2�2�2

w

16

�
� H2: (7)

The above equation leads to de Sitter spacetime aðtÞ / eHt.

Here we assumed ��> 3�2�2�2
w=16. Note that if we chose

�� ¼ 0, there is no Minkowski solution. Hence, there must
exist residual vacuum energy in the matter sector at the end
of the day. This is related to the issue of the cosmological
constant, which is beyond the scope of this Letter.
Now we consider tensor perturbations ds2 ¼

�dt2 þ aðtÞ2½�ij þ hijðt;xÞ�dxidxj, where hij satisfies

the transverse-traceless conditions. Substituting this metric
into the total action, we obtain the quadratic action

�2S ¼
Z

dtd3xa3
�

1

2�2
_hij _h

j
i þ

�2

8w4a6
�2hij�h

j
i

þ �2�

8w2a5
�ijk�hil�h

l
kjj �

�2�2

32a4
�hij�h

j
i

þ �2�2�w

32ð1� 3�Þa2 h
i
j�h

j
i

�
; (8)

where � represents the Laplace operator. The transverse-
traceless tensor hij can be expanded in terms of plane

waves with wave number k as

hijðt;xÞ ¼
X

A¼R;L

Z d3k

ð2�Þ3 c
A
kðtÞeik�xpA

ij; (9)

where pA
ij are circular polarization tensors which are de-

fined by iks�
rsjpA

ij ¼ k�Apr
i
A [12]. Here �R ¼ 1 and

�L ¼ �1 modes are called the right-handed mode and
the left-handed mode, respectively. We also impose nor-
malization conditions p�i

j
Apj

i
B ¼ �AB, where p�i

j
A is the

complex conjugate of pi
j
A. Substituting the expansion (9)

into the gravitational action (8), we obtain

�2S ¼ X
A¼R;L

Z
dt

d3k

ð2�Þ3 a
3

�
1

2�2
j _c A

kj2 �
�
�2k6

8w4a6

� �A �
2�k5

8w2a5
þ �2�2k4

32a4
þ �2�2�wk

2

32ð1� 3�Þa2
�
jc A

kj2
�
:

(10)

Using the variable vA
k � ac A

k and conformal time 	 de-
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fined by d	=dt ¼ 1=a, we obtain the equations of motion

@2

@	2
vA
k þ

�
kAeff

2 � 2

	2

�
vA
k ¼ 0; (11)

where we used a ¼ �1=H	 and defined kAeff
2 ¼ 
2k2f1þ

�ð
k	Þ2ð1þ �A�
k	Þ2g. We have also defined


2 ¼ �4�2�w

16ð1� 3�Þ ; �¼H2 1� 3�

�w

2
; �¼H

2

w2�

:

(12)

Here 
 is ‘‘the emergent speed of light’’ [16], and � and �
are dimensionless parameters.

Since there appears �A in Eq. (11), the evolution of the
right-handed mode is different from that of the left-handed
mode. Hence, the dimensionless parameter � characterizes
‘‘the parity violation.’’ If � ¼ 0 and 
 is exactly the speed
of light, Eq. (11) becomes the equation for gravitational
waves in a pure de Sitter background in Einstein theory.
Then � measures the ‘‘deviation from Einstein theory.’’

Circular polarization.—Now we calculate the power
spectrum jc A

kj2 numerically and evaluate the degree of
circular polarization of primordial gravitational waves.

For the numerical analysis, it is convenient to introduce
dimensionless variables k0 � 
k=H and y � k0H	. Using

these variables and the transformation 
A � ffiffiffiffiffiffiffiffi
k0H

p
vA
k=�,

we can write down the basic equation

d2

dy2

A þ!2ðyÞ
A ¼ 0; (13)

where !2ðyÞ ¼ 1þ �y2ð1þ �A�yÞ2 � 2=y2. Since WKB
approximation is pretty good in the asymptotic past y !
�1, we can choose the adiabatic vacuum as the initial
condition. More precisely, we set the positive frequency
modes as


A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2!ðyÞp exp

�
�i

Z y

yi

!ðy0Þdy0
�
: (14)

On superhorizon scales y ! 0, Eq. (13) has asymptotic
solution 
A ¼ CA=yþDAy2 with constants of integration
CA and DA. Hence, the power spectrum defined by
k3jc A

kj2 ¼ k3jvA
k=aj2 ¼ �2H2jy
Aj2=
3 reduces to

k3jc A
kj2 ¼

�2H2


3
jCAj2 (15)

on superhorizon scales y ! 0. So we need only to calculate
CA using Eq. (13) with the initial condition (14). Notice
that the power spectrum PðkÞ ¼ k3jc A

kj2 is scale free.
From the mode function (14), we see that the vacuum
depends on the chirality. In the WKB regime, the ampli-
tude of the right-handed mode grows, while that of the left-
handed mode decays. These two effects make the differ-
ence. In Fig. 1, we plotted the time evolution of the power
for a right-handed mode and a left-handed mode and also
displayed the case of Einstein theory for comparison.

Clearly, one can see that the differences of initial amplitude
and the growth rate during theWKB regime lead to circular
polarization.
Now we are in a position to discuss observability of

circular polarization. For this aim, we need to quantify
polarization by defining the degree of circular polarization

� ¼ jc R
kj2 � jc L

kj2
jc R

kj2 þ jc L
kj2

¼ jCRj2 � jCLj2
jCRj2 þ jCLj2 : (16)

Numerical results are plotted in Fig. 2. There are two
possible channels to observe circular polarization of pri-
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FIG. 1. The time evolution of the power is depicted. The thick
solid line represents the evolution for conventional Einstein
gravity. The thin solid line and the dotted line show the time
evolution of the right-handed mode and left-handed mode,
respectively.
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FIG. 2. The degree of circular polarization� for various � as a
function of � is shown. As can be seen from the figure, � grows
as the � becomes large. The dependence on � is not monotonic;
rather, there is a value which gives the maximum polarization for
fixed �.
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mordial gravitational waves. One is the indirect detection
of circular polarization through the cosmic microwave
background radiation; the required degree of circular po-
larization has been obtained as j�j * 0:35ðr=0:05Þ�0:6 in
[17], where r is the tensor-to-scalar ratio. The relevant
frequency of gravitational waves in this case is around f�
10�17 Hz. From Fig. 2, supposing r ¼ 0:05 and � ¼ 1, we
see that we can detect the circular polarization through the
temperature and B-mode polarization correlation if �>
0:2. The other is the direct detection of circular polariza-
tion; the required degree of circular polarization has been
estimated as �� 0:08ð�GW=10

�15Þ�1ðSNR=5Þ around
the frequency f� 1 Hz [18], where �GW is the density
parameter of the stochastic gravitational waves and SNR is
the signal to the noise ratio [18–20]. Here, 10 years of
observational time is assumed. Taking a look at Fig. 2, one
can see that it is easy to get the circular polarization of the
order of 0.08 in the present model. Hence, we can prove or
disprove quantum gravity at a Lifshitz point by these
observations.

Conclusion.—We have considered the inflationary sce-
nario in the context of quantum gravity at a Lifshitz point
which is supposed to be a power-counting renormalizable
theory. Because of the detailed balance condition, the
action necessarily contains a Cotton tensor which violates
the parity invariance. We have calculated the degree of
circular polarization of primordial gravitational waves. As
a consequence, we find that chiral primordial gravitational
waves exist for generic parameters. It should be empha-
sized that the existence of circular polarization is a robust
prediction of the theory.

In the usual discussions on the trans-Planckian effects,
phenomenological approaches have been adopted, and
mostly a modification of the spectrum has been discussed,
while we have used a candidate of quantum gravity and
discussed chirality of primordial gravitational waves. The
point is that we have found a modification of the nature of
gravitational waves rather than a modification of the shape
of the spectrum for gravitational waves. It is also apparent
that the power spectrum for curvature perturbations is scale
free. Thus, quantum gravity at a Lifshitz point is consistent
with all current observations. Moreover, we have a testable
smoking gun of quantum gravity.

There are many issues to be pursued. One of those is to
find exact solutions which represent black holes. When
black hole solutions are found, it will be very interesting
to examine their spacetime structures, thermodynamics,
and Hawking radiation. It would also be intriguing to apply
the idea of the anisotropic scaling in gravity to braneworld
cosmology [21]. Furthermore, the possibility to generalize

the anisotropic scaling in gravity to cases where spatial
isotropy is broken would be interesting from the point of
anisotropic inflationary scenarios [22,23].
J. S. is supported by the Japan-U.K. Research

Cooperative Program and Grant-in-Aid for Scientific
Research Fund of the Ministry of Education, Science and
Culture of Japan No. 18540262.
Note added.—After submitting our Letter, we found a

related work in the archive where inflation caused by a
Lifshitz scalar is considered [24].
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