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We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a

Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the

electromagnetic scattering cross section and show that they are in excellent agreement with analytical

approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor,

and gravitational waves. We present a unified picture of the scattering of all massless fields for the first

time.
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Black holes are thought to be efficient catalysts for the
liberation of rest-mass energy. As such, black holes are
implicated in the most energetic phenomena in the known
universe (e.g., gamma ray bursts). On the other hand, after
a turbulent youth, many black holes settle into a quiescent
old age. Some estimates suggest there may be up to a
billion quiescent stellar-mass black holes within our galaxy
[1]. Their existence may be inferred from, for example, the
transient lensing of background sources; a handful of
events have so far been observed [2]. A possibility for
future consideration is that quiescent black holes may be
indirectly identified from the ‘‘fingerprint’’ they leave on
radiation that impinges upon them.

Over the last four decades, some clues about the prop-
erties of any such ‘‘fingerprint’’ have been uncovered. For
example, a time-dependent perturbation incident upon a
black hole will excite characteristic damped ringing in
response. The frequencies and decay rates of the ringing
are linked to the well-studied quasinormal mode spectrum
[3]. Black holes illuminated by long-lasting planar radia-
tion will create interference patterns, and rotating black
holes will create distinctive polarization patterns [4]. Both
effects depend strongly on the ratio of horizon size to
wavelength. Hence, it is conceivable that future
gravitational-wave detectors may be able to identify the
fingerprint from rapid and distinctive variations across a
narrow frequency band. Nevertheless, inferring the pres-
ence of quiescent black holes from such clues must remain
a challenge for future decades.

Scattering by black holes is of foundational interest in
both black hole physics [5] and scattering theory [6]. Many
authors have studied the simplest time-independent sce-
nario, in which a black hole is subject to a long-lasting,
monochromatic beam of radiation. Here, the key dimen-

sionless quantity is the ratio rh=�, where rh is the horizon
size of the black hole, and � is the wavelength of the
incident wave. The interference pattern depends also on
the spin s of the perturbing field, with s ¼ 0, 1=2, 1, and 2
corresponding to scalar, neutrino, electromagnetic, and
gravitational fields, respectively.
To the best of our knowledge, the first paper outlining a

calculation of wave scattering cross section in the space-
time of a black hole was published by Matzner [7] in the
late sixties. Since then, planar wave scattering from black
holes has received much attention, especially in
Schwarzschild and Kerr spacetimes (see Refs. [5,8,9] for
comprehensive accounts on the subject). Let us briefly
review a sample of the literature for the simplest case,
the Schwarzschild black hole, for which the scattering of
monochromatic fields of all spins (s ¼ 0, 1=2, 1, and 2) has
been studied through the years. The case of scalar waves
(s ¼ 0) was extensively studied by Sanchez [10,11], both
analytically and numerically, and an accurate numerical
study was later performed by Andersson [12]. Fermion
(s ¼ 1=2) scattering by a Schwarzschild black hole was
the subject of a recent study [4], in which the authors also
elucidated the effect of nonzero field mass. The case of
electromagnetic waves (s ¼ 1) was studied analytically by
Mashoon [13] and Fabbri [14], and some results were
obtained in the low- and high-frequency limits.
Gravitational waves (s ¼ 2) were the first to be studied
in black hole scattering [15], and are the subject of old
[5,16] and new [17,18] works.
In this Letter, we present the first detailed numerical

investigation of the scattering of an electromagnetic plane
wave by a Schwarzschild black hole. This work fills a gap
in the literature and complements recent numerical studies
of the scalar [19], fermionic [4], and gravitational [18]
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cases. We take this opportunity to present a unified picture
of all four fields, for the first time.

We use natural units with c ¼ G ¼ 1 and the metric
signature (þ���).

The line element of Schwarzschild spacetime can be
written as

ds2 ¼ fðrÞdt2 � ½fðrÞ��1dr2 � r2ðd�2 þ sin2�d�2Þ;
(1)

where fðrÞ ¼ 1� 2M=r, with M being the black hole
mass. The Schwarzschild solution describes static and
chargeless black holes, with event horizon at rh ¼ 2M.

The Lagrangian density of the electromagnetic field in
the modified Feynman gauge is [20]

L ¼ � ffiffiffiffiffiffiffi�g
p �

1

4
F��F

�� þ 1

2
G2

�

with g ¼ detðg��Þ, G � r�A� þ K�A�, and K� ¼
ð0; df=dr; 0; 0Þ. The equations of motion are found to be

r�F
�� þr�G� K�G ¼ 0: (2)

The two physical polarizations in Schwarzschild space-
time can be written as

AðI!lmÞ
� ¼

�

0;
’I

!lðrÞ
r2

Ylm;
f

lðlþ 1Þ
� d

dr
½’I

!lðrÞ�@�Ylm;
f

lðlþ 1Þ
� d

dr
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!lðrÞ�@�Ylm

�

e�i!t; (3)

AðII!lmÞ
� ¼ ð0; 0; ’II

!lðrÞYlm
� ; ’II

!lðrÞYlm
� Þe�i!t; (4)

with!> 0, and l � 1. [See, e.g., Ref. [20] for a discussion
on the possible solutions of Eq. (2).] In Eqs. (3) and (4), Ylm

and Ylm
a (a ¼ �, �) are the scalar and vector spherical

harmonics [21], respectively, and ’�
!lðrÞ satisfy the follow-

ing equation

½!2 � VðrÞ�’�
!lðrÞ þ f

d

dr

�

f
d

dr
’�

!lðrÞ
�

¼ 0; (5)

with � ¼ I, II, where the effective potential is VðrÞ ¼
f½lðlþ 1Þ=r2�.

To evaluate the solutions of the Eq. (5) in the asymptot-
ical limits, we use the Wheeler coordinate, defined as
x ¼ rþ rh lnðr=rh � 1Þ, and rewrite Eq. (5) as

ð!2 � VÞ’�
!lðxÞ þ

d2

dx2
½’�

!lðxÞ� ¼ 0: (6)

For the computation of the scattering cross section we
need only to consider modes incoming from the past null
infinity J�. For these modes, the asymptotic solutions of
Eq. (6) are [22]

’�
!lðxÞ � A�

!lT
�
!le

�i!x; (7)

for x ! �1 (r ! rh) and

’�
!lðxÞ
!x

� A�
!l½ð�iÞlþ1hð1Þ�l ð!xÞ þ R�

!li
lþ1hð1Þl ð!xÞ�; (8)

for x � rh (r � rh). Here, h
ð1Þ
l ðxÞ denote the spherical

Bessel functions of the third kind [23], and jR�
!lj2 and

jT�
!lj2 are the reflection and transmission coefficients, re-

spectively, which satisfy jR�
!lj2 þ jT�

!lj2 ¼ 1. A�
!l is a

normalization constant which is not important for the
scattering properties.
The phase shifts are related to the reflection coefficient

by

e2i�
�
l
ð!Þ ¼ ð�1Þlþ1R�

!l: (9)

For Schwarzschild black holes, the phase shifts of the two
different physical polarizations are the same, i. e., �I

l ð!Þ ¼
�II
l ð!Þ ¼ �lð!Þ [14].
The differential electromagnetic scattering cross section

is [24]
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; (10)

where Pm
l ðcos�Þ are the associated Legendre functions.

Note that Eq. (10) takes into account the contributions
from the two physical polarizations, and it is valid for
both linearly and circularly polarized waves. The polariza-
tion properties of the initial wave remain unchanged in the
scattering by nonrotating black holes [13].
For small angles, this scattering cross section is the same

for the massless scalar and electromagnetic fields, and it is
given by [13,14]

d�

d�
� 16M2

�4
: (11)

In fact, the same behavior for small angles is obtained for
massless fermionic and gravitational fields scattered in
Schwarzschild spacetime [4,5,17].
The glory approximation for scattering of electromag-

netic waves by a Schwarzschild black hole can be deter-
mined using the strong field approximation for the
deflection angle (which was first obtained by Darwin
[25]) together with the general glory formula [26], namely,
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��¼�
½J2sð!bg sin�Þ�2; (12)

where b is the impact parameter of the incident particle,
JlðxÞ are the Bessel functions of first kind, bg is the impact

parameter for which the scattering angle is �, and s is the
particle spin. For the electromagnetic field (s ¼ 1), the
glory scattering cross section is given by
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����
� 30:75M!½J2ð5:36M! sin�Þ�2; (13)

where the coefficients (30.75 and 5.36) were obtained by
solving the geodesic equation numerically [27].

In order to evaluate the electromagnetic scattering cross
section numerically, we first solve Eq. (5) and match the
solution with Eqs. (8) and (9). The scattering cross section
for arbitrary frequencies and angles is obtained through
Eq. (10). The numerical method used here is analogous to
the one described in Ref. [28]. We have employed an
iterative method similar to that used in Refs. [18,29] to
improve the numerical convergence of the partial wave
series.

In Fig. 1, we show the differential electromagnetic scat-
tering cross section of Schwarzschild black holes com-
puted numerically for different values of the incident
wave frequency (M! ¼ 1, 2, 3, 4). We also show the
results for the glory scattering [given by Eq. (13)] in each
case. Our numerical results are in excellent agreement with
the glory approximation for � � �.

The zero in the backward direction (Fig. 1) is a conse-
quence of the parallel-transport of the polarization vector
along a geodesic. Consider an incoming geodesic ray in the
z-direction which orbits the hole once, to return in the
opposite direction (� ¼ �). Assume, without loss of gen-
erality, it has an electric-field vector in the x direction. If
the ray orbits in the x-z plane, then the vector will be
reversed, whereas if the ray orbits in the y-z plane, the
vector remains unchanged. Hence, by integrating over the
circular degeneracy (all orbital planes), there is perfect
cancellation. Similar arguments hold for other spins [5,30].

In Fig. 2, we plot the differential scattering cross section
of Schwarzschild black holes for massless scalar (s ¼ 0),
massless spinor (s ¼ 1=2), electromagnetic (s ¼ 1), and
gravitational (s ¼ 2) waves. As expected, in the backward
direction, all nonzero spin massless fields have vanishing
cross section, whereas the zero-spin (scalar) massless field
has a glory maximum at � ¼ �. We see that scalar (s ¼ 0)
and electromagnetic (s ¼ 1) scattering cross sections are
very similar in the angular region 45	 < �< 160	. All
integer spin fields (s ¼ 0, 1, 2) behave similarly for 45	 <
�< 120	. Bosonic (s ¼ 0, 1, 2) and fermionic (s ¼ 1=2)
scattering cross sections oscillate in antiphase throughout
almost all the angular range of Fig. 2 (except near �
 �).

The regular oscillations in the cross sections of Fig. 2
can be understood semiclassically. They arise from the
interference of rays passing in opposite senses around the
hole. There is a ‘‘path difference’’ between the rays passing
through angles � and 2�� �. A maximum (minimum)
occurs when the path difference is an integer (half-integer)
multiple of the wavelength �. Hence, the angular width of
the oscillations is inversely proportional to M!.

In summary, we have studied the scattering of a
monochromatic planar electromagnetic wave by a

Schwarzschild black hole. We have applied the partial
wave method to obtain the differential scattering cross
section numerically, for different values of the frequency
of the incident plane wave and for different values of the
scattering angle. We have presented graphs with accurate
numerical results for massless fields of all spins, that is,
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FIG. 1 (color online). Electromagnetic scattering cross section
of Schwarzschild black holes for different choices of M!. We
compare our numerical results (solid lines) with the glory
approximation (dashed lines) given by Eq. (13), obtaining ex-
cellent agreement for � � �.
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scalar (s ¼ 0), fermionic (s ¼ 1=2), electromagnetic (s ¼
1), and gravitational (s ¼ 2) fields. All nonzero spin mass-
less fields have a vanishing scattering cross section in the
backward direction (� ¼ �), whereas the scattering cross
section of the massless scalar field has a local maximum.

The authors would like to thank Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico (CNPq) for
partial financial support, and Roberto Fabbri for email
correspondence. S. D. acknowledges financial support
from the Irish Research Council for Science, Engineering
and Technology (IRCSET). S. D. and E.O. thank the
Universidade Federal do Pará (UFPA) in Belém for kind
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FIG. 2 (color online). Scattering cross section of
Schwarzschild black holes for massless scalar (s ¼ 0), electro-
magnetic (s ¼ 1), gravitational (s ¼ 2), and massless fermionic
fields (s ¼ 1=2) at M! ¼ 4:0. Note the log scale on the vertical
axis of the lower plot. We see that, as all other nonzero spin
fields, the electromagnetic wave has a vanishing scattering cross
section in the backward direction.
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