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We outline a new kinetic theory for positrons in soft matter, which blends together cross sections for

positrons scattering from single molecules, with the structure function of the medium as a whole.

Numerical results are presented for positrons in liquid argon, where negative differential conductivity

arises from both positron formation and the structure of the medium.

DOI: 10.1103/PhysRevLett.102.230602 PACS numbers: 05.20.Dd, 34.80.Uv, 36.10.Dr

Introduction.—An understanding of the interaction of
free positrons with soft, biological matter is important for
medical diagnostic procedures, such as positron emission
tomography [1]. However, a deficiency in the understand-
ing of the fundamental physics at the atomic and molecular
level limits the full potential of these important applica-
tions, something which has prompted a renewed effort in
both measurement [2] and ab initio theoretical calculation
[3,4] of positron-atom and molecule scattering cross sec-
tions including biomolecules [5]. While we expect full sets
of cross sections for the relevant biological molecules to
become available eventually, such microscopic informa-
tion is by itself not sufficient for applications to the macro-
scopic world. Although there has been renewed interest in
the transport of positrons in gaseous systems [6,7], this
Letter addresses for the first time the next step on the way
to dealing with these important applications, namely, the
calculation of transport coefficients for positrons in soft
condensed matter. As is the case for electrons in liquids
(see the review [8]), the microscopic-macroscopic link is
provided by kinetic theory, with Boltzmann’s kinetic equa-
tion being modified to account for structure and coherent
elastic scattering. This Letter first outlines the essential
theory for positron transport in structured media including
a multiterm solution technique which avoids the limita-
tions of the two-term approximation traditionally em-
ployed for electrons. Second, we consider the case of
positrons in liquid argon, focusing, in particular, on the
effects of positronium (Ps) formation and liquid structure,
and their influence on transport coefficient duality and
negative differential conductivity (NDC)—the fall of the
drift velocity with increasing reduced electric field E=n0.

Positron Boltzmann equation.—For sparse positrons of
charge e, massm, and velocity c in a gaseous or condensed
matter medium subject to an electric field E, one solves the
Boltzmann kinetic equation for the positron phase distri-
bution function fðr; c; tÞ:�
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f ¼ �JðfÞ; (1)

where J ¼ Jelas þ Jinel þ JPs þ Ja is a linear collision op-

erator representing the various collisional processes with
the medium. The two most important processes are the
elastic collision operator Jelas, modified from Boltzmann’s
original expression to account for coherent scattering from
structured media, using a generalization of [9] (see below)
and the operator describing Ps formation, JPs ¼ n0c�PsðcÞ,
where n0 is the number density of the molecules of the
background medium and �PsðcÞ is the Ps-formation cross
section. The positron annihilation operator Ja is similarly
defined in terms of an annihilation cross section �aðcÞ,
while Jinel is taken here to be the semiclassical inelastic
collision operator [8,10]. This is the microscopic picture.
Macroscopic properties are then obtained as averages of
certain quantities �ðcÞ over positron velocities h�ðcÞi ¼
1
n

R
dcfðr; c; tÞ�ðcÞ, where nðr; tÞ ¼ R

dcfðr; c; tÞ is the

positron number density, e.g., the mean energy " �
h1=2mc2i and mean velocity v � hci.
Spherical harmonics representation.—The first step in

the solution of (1) is the spherical harmonics expansion

fðr; c; tÞ � Xlmax

l¼0

Xl
m¼�l

fðlÞm ðr; c; tÞY½l�
m ðĉÞ; (2)

where truncation at l ¼ lmax is required for solution. The
traditional ‘‘two-term’’ approximation (lmax ¼ 1) contin-
ues to be used exclusively in electron-liquid transport
calculations [8], although it is known from gaseous elec-
tronics that this can lead to a serious error [11]. In best
practice, the integer lmax is incremented until a prescribed
accuracy criterion is met as considered here. Combining
(1) and (2) leads to the following hierarchy of coupled

integro-differential equations for fðlÞm :
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m0 ¼ �X
l0m0

hlmjJjl0m0ifðl0Þ
m0 : (3)

Expressions for the matrix elements of the streaming op-
erator on the left-hand side are given in [11,12]. The
collision matrices hlmjJjl0m0i ¼ ½Jlelas þ Jlinel þ JlPs þ
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Jla��l0;l�m0;m are all diagonal in l and m, since the collision

operators are all scalars.
Collision operators.—For elastic collisions of positrons

with the constituent molecules of mass m0 of either a
gaseous or condensed medium at a temperature T0 and
number density n0, the same operator applies for l ¼ 0
[8,9], namely, to Oððm=m0Þ2Þ

J0elasðfð0Þ0 Þ ¼ �n0
m

m0c
2
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;

(4)

where �m ¼ �0 � �1 is the momentum transfer cross
section, �l ¼ 2�

R
�
0 d� sin�½1� Plðcos�Þ��ðc; �Þ are

the partial cross sections, and �ðc; �Þ is the differential
scattering cross section. While the structure of the medium
plays no role for l ¼ 0, for l � 1, Jlelas ¼ n0c½�0ðcÞ �
�lðcÞ� þOðm=m0Þ involves the static structure function
S [13] through the structure-modified partial cross sections,

�lðcÞ ¼ 2�
Z �

0
d� sin�Plðcos�Þ�ðc; �Þ; (5)

where �ðc; �Þ � S½2mc
@

sinð�2Þ��ðc; �Þ defines a differential
cross section modified to account for coherent scattering.
In the dilute gas phase limit, S ! 1, and it then follows that
�ðc; �Þ ! �ðc; �Þ. The two sets of partial cross sections
are linked by the relationship

�lðcÞ ¼ 1

4�

X
�0�00

ð2�0 þ 1Þð2�00 þ 1Þ
2lþ 1

�ð�00�000jl0Þ2��0 ðcÞs�00 ðcÞ; (6)

where ð�00�000jl0Þ is a Clebsch-Gordan coefficient and
slðcÞ ¼ 1

2
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sinð�2Þ�Plðcos�Þdðcos�Þ. For Ps for-

mation, the expression JlPs ¼ n0c�PsðcÞ holds for all l,
and similarly for annihilation. Matrix elements of the
inelastic collision operator are detailed in [11]. Before
proceeding with the numerical study, we note the following
points: (i) For s-wave scattering, �ðc; �Þ is independent of
angle �, (6) reduces to �lðcÞ ¼ �0ðcÞslðcÞ, and the
structure-modified ‘‘momentum transfer cross section’’ is
then given by �m ¼ �0 � �1 ¼ �0ðs0 � s1Þ. (ii) In the
two-term approximation, only the low order ‘‘moment’’
s0 � s1 ¼ 1

2

R
1
�1 S½2mc

@
sinð�2Þ�ð1� cos�Þdðcos�Þ of S is

sampled [8]. On the other hand, a multiterm solution
allows sampling of higher order moments of S and hence
gives more detailed information about the liquid structure.
Beyond this, soft matter transport coefficients can be ob-
tained immediately by application of the same analytical
and numerical techniques employed for gaseous media.

Comments on the work of Cohen and Lekner and
others.—The seminal work of [9] for electron transport in
structured media and subsequent applications for electrons
(see review [8]) and positrons [14] all make the two-term
approximation, thereby losing accuracy in the representa-
tion of the velocity dependence of f and reducing infor-
mation on the structure of the medium. This Letter shows

how these theories can be generalized by lifting these
restrictions. Furthermore, the results presented below dem-
onstrate that the Ps-formation rate must be calculated self-
consistently and not as a perturbation, as in [14].
Calculation and duality of transport coefficients.—

Differences exist between hydrodynamic transport coeffi-
cients defined using a flux-gradient relation (flux coeffi-
cients) and those defined using the diffusion equation (bulk
coefficients) when nonconservative collisional processes
are operative [15]. Of particular interest here is the duality
in the drift velocities—bulk and flux drift velocities. The
flux drift velocity WF is the mean velocity of positrons,
while the bulk drift velocity W can be thought of as the
drift velocity of the center of mass in a time-of-flight
experiment. When nonconservative processes, such as Ps
formation, act to modify the center of mass,WF � W. The
path to obtaining hydrodynamic transport coefficients in
gases is now textbook material [16], and suffice it to say

that a further decomposition of fðlÞm ðr; c; tÞ is made in terms
of gradients of density rjnðr; tÞ (j ¼ 0; 1; 2; . . . ). These
quantities can also be represented as spherical tensors,
generating a combined spherical harmonic-density gra-
dient expansion. The resulting hierarchy of equations ap-
pears in [11,12].
Positrons in liquid argon.—Any transport calculation

requires complete sets of single scattering positron impact
cross sections, e.g., for Ar [6]. In this set, all cross sections
are assumed isotropic and annihilation is neglected. These
cross sections and the structure-modified elastic cross sec-
tions (6) are displayed in Fig. 1. The structure factor for

liquid Ar at 85 K (atomic density is 0:021 25 �A�3) is taken
from [17], while in the dilute gaseous limit, S is set to unity.
We note that the influence of structure is reduced at higher
energies since de Broglie wavelengths, and hence coherent
scattering effects, are reduced and the liquid phase elastic
cross sections approach those in the dilute gas phase limit.
It follows that the liquid positron transport properties
approach those of the dilute gaseous phase in the high

FIG. 1 (color online). Positron impact cross sections in dilute
gaseous Ar �i (see [6] and references therein) and structure-
modified elastic cross sections �0 ��l in liquid Ar at 85 K.
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field, high energy limit. In Figs. 2 and 3, we display
transport properties for positrons in liquid and dilute gase-
ous Ar at 85 K as a function of the reduced electric field
E=n0 (1 townsend ¼ 1 Td ¼ 10�21 Vm2). Excellent
agreement exists between the current results for the dilute
gaseous case and those of independent Monte Carlo results
recently reported [6]. We present converged multiterm
results only in these figures but note that two-term results
are generally accurate to within 1% for the particular case
and transport coefficients under consideration.

In Fig. 2, we display the mean energy and Ps-formation
rate. At low E=n0, the results for the two phases approach
the thermal value, as required thermodynamically. At in-
termediate fields, however, we observe for a given field that
the mean energy in the liquid phase is greater than that in
the dilute gaseous phase indicating that energy can be
deposited into the positron swarm more efficiently in the
liquid phase. The reduction in the effective momentum
transfer cross section at a given energy brought about by
coherent scattering processes reduces the randomization in
direction due to collisions and consequently facilitates
enhanced power input from the field. The rapid increase
in the mean energy appears as the positrons experience the
Ramsauer minimum. The plateau region at higher reduced
fields is a reflection initially of rapidly increasing momen-
tum transfer, followed by enhanced energy deposition into
excitation and ionization channels and the preferential loss
of higher energy positrons to Ps formation, so-called Ps-
induced cooling.

In Fig. 3, a comparison of drift velocities (flux and bulk)
for positrons in liquid and dilute gaseous Ar is presented.
In the low-field limit, the liquid phase drift velocity is more
than an order of magnitude greater than those in the dilute
gas phase. This reflects the reduction in the momentum
transfer collision cross section (and higher order cross
sections) due to coherent elastic scattering which conse-
quently enhances the directed motion (and hence drift

velocity) of the positron swarm. At higher fields, Ps for-
mation becomes significant (see Fig. 2), and the bulk and
flux drift velocities diverge as the center of mass of the
positron swarm is now explicitly modified through posi-
tron loss to Ps formation. These differences between the
two types of drift velocity can be greater than 2 orders
of magnitude. The most striking observation in Fig. 3,
however, is the existence of two independent forms of
NDC for positrons in liquid Ar. This contrasts the case
for positrons in dilute gaseous Ar where only one form of
NDC appears [6].
We will focus initially on the low-field NDC region

present only in the liquid phase. In this field range there
is limited excitation, ionization, or Ps formation (see
Fig. 2), and it follows that this form of NDC is induced
purely through the inclusion of the liquid structure, i.e.,
coherent elastic scattering. This form of NDC is referred to
as ‘‘structure-induced NDC.’’ In contrast to other forms of
NDC for electron transport in dilute gases [18,19], this
form of NDC requires neither inelastic scattering processes
nor nonconservative processes to induce it. To understand
the origin of this effect and formulate conditions for its
existence, we now consider the static spatially uniform
momentum and energy balance equations formed from
(1) using the momentum transfer approximation [16]:

eE ¼ ~�mð"ÞWF; (7)

eE �WF ¼ 2
m

m0

�mð"Þ
�
"� 3

2
kT0

�
; (8)

where �m ¼ n0c�0 and ~�m ¼ n0c�m ¼ �mðs0 � s1Þ. By
using these relations, it can be shown that the condition for

structure-induced NDC (dWF=dE < 0) is d lnðs0�s1Þ
d ln" > 1

when coherent elastic scattering processes only are opera-
tive. This criterion is independent of the energy depen-

FIG. 3 (color online). The flux and bulk drift velocity of
positrons in liquid and dilute gaseous Ar at 85 K as a function
E=n0. These results are compared with the dilute gas phase
results using Monte Carlo simulation [6].

FIG. 2 (color online). The mean energy and Ps-formation rates
for positrons in liquid and dilute gaseous Ar at 85 K as a function
of E=n0. These results are compared with the dilute gas phase
results using Monte Carlo simulation [6].
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dence of the scattering cross sections and is purely depen-
dent on the energy variation of the moments of S. In Fig. 4,
we plot s0 � s1 as a function of " and include the critical
lines for NDC. By using Fig. 2, the lower bound on the
structure-induced NDC condition is consistent with the
onset on structure-induced NDC in Fig. 3. The upper bound
is overestimated by the criterion, however, as in this region
inelastic and Ps-formation processes are significant. We
could modify the condition to include these additional
effects, but such details are beyond the scope of this
Letter. In the dilute gaseous case, s0 � s1 is unity and
hence structure-induced NDC does not arise. This criterion
also carries over to electron transport in liquids and dense
gas systems.

Moving to higher values of E=n0, we see thatW andWF

diverge due to the onset of Ps formation, and moreover
a second form of NDC emerges in bulk drift velocity W
only, viz., Ps-formation-induced NDC. Its origin is dis-
tinctly different from structure-induced NDC discussed
above and is brought about purely by positron loss asso-
ciated with Ps formation, for reasons similar to that given
by [6] in a Monte Carlo analysis of the gas phase. The
present study, based on kinetic theory, demonstrates that
Ps-formation-induced NDC carries over to the liquid
phase. As for gases, the effect is basically due to the
preferential depletion of more energetic positrons in Ps
formation, and the reader is referred to [6] for a detailed
explanation.

Concluding remarks.—We have presented the first mul-
titerm solution of a new kinetic equation describing posi-
tron transport in soft condensed matter. The kinetic
equation includes coherent elastic scattering (via the gen-
eralization of the Cohen and Lekner collision operator),
excitation and ionization scattering, and Ps formation. The
kinetic equation and associated solution technique are

general and can be applied in the continuum from the
dilute gas phase through to the liquid phase. The technique
has been applied for the first time to positrons in liquid and
dilute gaseous argon at 85 K. We find that transport prop-
erties of positrons in liquids approach the dilute gaseous
values in the high field limit. Of particular note is that the
existence of two different sources of NDC are present for
positrons in liquid Ar: (i) structure-induced NDC brought
about by coherent elastic scattering (which is absent in the
dilute gas phase limit), and (ii) Ps-induced NDC (which is
also present in dilute gaseous phase). Such phenomena
may be measurable through suitable adaptation of the
experimental techniques detailed in [14,20]. Future inves-
tigations will aim to identify other multiscattering and
localization effects that have been present for electrons in
liquids.
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