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Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, A-6020 Innsbruck, Austria

M.A. Martin-Delgado
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The partition function of all classical spin models, including all discrete standard statistical models and

all Abelian discrete lattice gauge theories (LGTs), is expressed as a special instance of the partition

function of the 4D Z2 LGT. This unifies all classical spin models with apparently very different features in

a single complete model. This result is applied to establish a new method to compute the mean-field theory

of Abelian discrete LGTs with d � 4, and to show that computing the partition function of the 4D Z2 LGT

is computationally hard (#P hard). The 4D Z2 LGT is also proved to be approximately complete for

Abelian continuous models. The proof uses techniques from quantum information.
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1. Introduction.—Gauge theories describe the most fun-
damental interactions in nature, like QED, weak interac-
tions and QCD. Only gravity has evaded a quantum version
of the gauge principle. Lattice Gauge theories (LGTs) are
cutoff regulations of gauge theories of strongly interacting
particles [1,2]. When formulated on a lattice, LGTs be-
come a new type of statistical mechanical models that are
interesting by themselves, regardless of their connection
with quantum gauge theories in continuous space-time.

While standard statistical models (SSMs) (like the clas-
sical Ising or Potts models [3]) have global symmetries
which are broken by local order parameters leading to
different phases [4], LGTs have been introduced as models
with local symmetries [5] which can only be broken by
global order parameters, corresponding to closed string
observables. LGTs have also been constructed for arbitrary
non-Abelian gauge groups in the context of QCD to de-
scribe strong interactions [6]. Many interesting phenomena
are known to arise in LGTs which are different from SSMs.
For example, LGTs may exhibit nontrivial phase diagrams
that do not correspond to any continuum field theory.
Already the simplest instances of LGTs—Abelian discrete
LGTs—exhibit remarkable features such as a rich phase
diagram depending on the gauge group Zq and the under-

lying lattice, or confinement in the strong coupling limit. In
fact, it has been argued that the center of the group SUðqÞ,
i.e., the gauge group of Abelian discrete LGTs, Zq, plays

an important role in the confinement problem [7].
Given the variety of features of these models, a funda-

mental question arises: is it possible to give some structure
to the set of all classical models? In this Letter we will give
a positive answer to this question by showing that an LGT
with Z2 gauge symmetry in a four dimensional square
lattice, the 4D Z2 LGT, is complete with real coupling
strengths for all Abelian discrete LGTs and all discrete
SSMs. Here completeness means that the partition function

of a large set of models (here, all classical spin models) can
be expressed as a specific instance of the partition function
of the complete model (thus, the notion of completeness
can be seen as a form of universality). While similar
completeness results for the 2D or 3D Ising model have
been recently found in the context of SSMs [8,9], they are
either restricted to specific classes of models [8], or are
general but require complex coupling strengths, thereby
lacking a physical interpretation [9].
The completeness results we present here are general

and are entirely based on real coupling strengths, and thus
are not only mathematical relations, but have physical
implications. Note that all completeness results require to
consider inhomogeneous coupling strengths in the com-
plete model. The results are general in the sense that they
hold for all models with an arbitrary interaction pattern
(including k-body interactions, and in any dimension d)
between arbitrary q-level spins, which include all Abelian
discrete LGTs and all (Abelian) discrete SSMs. The latter
result establishes a general, explicit relation between mod-
els of very different physical origin (e.g., models with local
as opposed to global symmetries), in contrast with the
specific and rather involved connections between certain
SSMs and certain LGTs known before [1]. Furthermore,
we will also show that the 4D Z2 LGT can efficiently
approximate Abelian continuous LGTs with polynomial
accuracy, as well as continuous SSMs, for which the
efficiency depends on the scaling of the parameters, as
will be specified below. To establish the proof, we use
results from quantum information.
2. Completeness of the 4D Z2 LGT.—In order to prove

the main result of this Letter, i.e., the completeness of the
4D Z2 LGT, we first present a quantum formulation of the
partition function of Abelian discrete LGTs (Sect. 2.1),
which allows us to construct systematic mappings to other
models by properly choosing interaction strengths
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(Sect. 2.2). Then, we present a method to obtain general
n-body interactions using only Ising-type interactions
(Sect. 2.3). Finally, we shall use the manipulations of 2.2
to obtain all interactions required in 2.3 (Sect. 2.4).

2.1. Quantum formulation of the partition function of
Abelian discrete LGTs.—We consider a standard definition
of an Abelian discrete LGT using a Wilson Hamilton
function in terms of face interactions, with gauge group
Zq. That is, we consider a lattice in d dimensions in which

each face f 2 F has k sides or edges. Classical spins sit at
the edges e 2 E of the lattice, they have q levels, se ¼
0; 1; . . . ; q� 1, and they are subject to a k-body interaction
in every face:

HðsÞ ¼ �X

f2F

J1...k cos

�
2�

q
ðs1 þ s2 þ . . .þ skÞ

�
; (1)

where J1...k is the interaction strength at face f that has
spins s1; . . . ; sk at its boundary, and the cosine depends on
the sum of the spins modulo q. For q ¼ 2 (and any k and d)
we shall refer to these interactions as ‘‘Ising-type interac-
tions’’, and to the model as ‘‘d Z2 LGT’’ (by default
meaning k ¼ 4). Note that in this case each term in the
Hamilton function takes the form J1...kð�1Þs1þ...þsk ,
thereby only depending on the parity of the k adjacent
spins. The Hamilton function (1) is invariant under the
local transformation gv ¼ Q

e:eadjvXe, where e adj v are

edges adjacent to a vertex v, and Xe is defined as Xe: se !
ðse þ 1Þmodq. The gauge group is generated by these trans-

formations: Zq ¼ hgv;8v 2 Vi. The partition function of

this system is defined as

ZLGT ¼ X

s

e��HðsÞ; (2)

where � ¼ 1=ðkBTÞ is the inverse temperature, and s :¼
ðs1; . . . ; sjEjÞ is the spin configuration.

Now we present a quantum formulation of (2). In the
same spirit as in [9,10], we define a quantum state of jFj
q-level quantum particles, which we can imagine to sit at
the center of each face, as in Fig. 1(a),

jc LGTi ¼
X

s

O

f2F

js1 þ . . .þ ski; (3)

where s1; . . . ; sk are the (values of the) spins at the bound-
ary of face f and they are summed modulo q. We also
define a product state j�i ¼ N

f2Fj�fi with

j�fi ¼
X

s1;...;sk

e�J1...k cos½ð2�=qÞðs1þ...þskÞ�js1 þ . . .þ ski: (4)

The basis states in (3) and (4) are the eigenstates of the

quantum phase shift operator Zjji ¼ ei2�j=qjji, for j ¼
0; 1; . . . ; q� 1. The partition function of the Abelian dis-
crete LGT (2) is then obtained by computing the overlap
between jc LGTi and j�i:

ZLGT ¼ h�jc LGTi: (5)

2.2. Merge and deletion rules.—Similar to [8,9] we now
show how to manipulate the state jc LGTi by means of
measurements. That is, we show how to choose a product
state j�i ¼ �f2 ~Fj�fi on a subset ~F of quantum particles

such that the state of the remaining particles after the
projection onto h�j, jc 0

LGTi ¼ ðh�j � IÞjc LGTi, is again

of the form (3), but now defined on a different lattice L0.
This allows us to relate the partition function of models
defined on L0 to the partition function of the 4D Z2 LGT
via (5). More precisely, we consider the merge rule of
faces, which corresponds to setting j�f0 i ¼ j0f0 i for a

certain face f0. From (4) we see that this choice corre-
sponds to setting Jf0 ¼ 1 [9]. Moreover, applying this

projection on state (3) we see that it sets the condition
s1 þ . . .þ sk ¼ 0 for the k spins at the boundary of f0.
Now we can substitute this condition on a neighboring face
which, instead of depending on, say, sk, will now depend
on s1 þ . . .þ sk�1. For example, if we apply h0j on the left
face of Fig. 1(a), we impose the condition s1 þ s2 þ s3 þ
s4 ¼ 0. This can be substituted in the right face, which will
now depend on ðs1 þ s2 þ s3Þ þ s5 þ s6 þ s7, thereby ef-
fectively merging the two faces into one larger face with an
Ising-type interaction with strength J4567 [Fig. 1(b)]. We
note that the merge rule can be concatenated, thereby en-
larging faces at will. On the other hand, the deletion rule of
faces corresponds to projecting a face f0 onto the symmet-
ric state

P
s1;...;sk

hs1 þ . . .þ skj, i.e., to setting Jf0 ¼ 0.

2.3. Method to obtain arbitrary n-body interactions.—
Next we show that we can generate a totally general
interaction between n 2-level particles if all Ising-type
k-body interactions between these n particles are available,
for any subset of k particles and all k ¼ 0; 1; . . . ; n.
A general interaction between n spins corresponds to

assigning a different energy �s to each spin configuration s.
Hence, we need to show that there always exists a combi-
nation of Ising-type interactions on the different subsets,
i.e., some J; J1; . . . ; Jn; J12; . . . ; J1...n (the subindex indi-
cates which particles participate in that interaction)
such that Jð�1Þ0 þ J1ð�1Þs1 þ . . .þ Jnð�1Þsn þ
J12ð�1Þs1þs2 þ . . .þ J12...nð�1Þs1þ...þsn ¼ �s is satisfied
for arbitrary �s and for all s. This is equivalent to showing
that a matrix with one prefactor of the J’s in each column
(i.e., ð�1Þ0; ð�1Þs1 ; . . . ; ð�1Þsn ; . . . ) and with one row for
each spin configuration is always invertible. Notice that
this is a square matrix, since there are

FIG. 1 (color online). (a) The state jc LGTi (here, on a 2D
square lattice) places one quantum particle (blue dots) at every
face, which characterizes the interaction of classical spins (black
dots) on that face. (b) The left face is merged with the right one
by setting J1234 ¼ 1 (marked with a shaded face).
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Xn

k¼0

n
k

� �
¼ 2n

J’s (columns), and 2n �s’s (rows). But by construction all
rows are linearly independent; hence, it has a nonzero
determinant, and thus it is invertible.

2.4. Explicit construction.—We now use the tools of
Sect. 2.2 in order to show that we can obtain all interactions
required in Sect. 2.3 in a 4DZ2 LGT. The proof will require
fixing some spins using the gauge symmetry of the model
(i.e., fixing them to zero while leaving the Hamilton func-
tion invariant), a technique which can be applied as long as
the edges whose spins are fixed form at most a maximal
tree (i.e., do not form a closed loop) [11].

First, a ‘‘single-body interaction’’ of s1 (analogous to a
magnetic field) is obtained by letting s1 interact with all
other spins around a face fixed by the gauge [Fig. 2(a)].

A two-body interaction is obtained by merging the front,
lower and back face and creating the face with blue
boundaries of Fig. 2(b). By fixing with the gauge six of
the spins at the boundary of the blue face, this face depends
only on s1 þ s2 þ rþ r ¼ s1 þ s2 (since the sum is
mod 2) [see Fig. 2(b)]. Thus, this effectively corresponds
to a two-body Ising-type interaction between s1 and s2 with
an interaction strength J12. Notice that by setting J12 ¼ 1
as well, we force s1 þ s2 ¼ 0, which can be seen as a
propagation of s1 into s2 (since s1 ¼ s2). A concatenated
application of this two-body interaction results in an effec-
tive propagation of a spin through a certain path (the turn-
ings of the path can be done similarly).

A three-body interaction is obtained by bringing three
spins s1, s2, s3 close to each other and then merging the
large blue face as indicated in Fig. 2(c). The interaction in
the blue face corresponds to a three-body Ising-type inter-
action between s1, s2 and s3 (since r1 and r2 are summed
twice) and with an interaction strength J123.

The generalization to k-body interactions with k � 4
can be done in a similar way as in Fig. 2(c). The spins sj
taking place in the final k-body interaction are never ad-
jacent, and each of them is part of a face at the front, back
or side with three spins fixed by the gauge (red u shapes).
All but one of the remaining faces are merged, and the
interaction strength J1...k in that face determines the k-body
Ising-type interaction.

Thus we have shown how to obtain k-body Ising-type
interactions between any group of k particles, for k ¼
1; . . . ; n (the zero-body interaction required in 2.3 is a
constant factor, so we obtain Z up to this factor). Since
the total number of interactions is 2n, we only need to show
that a given spin can participate in 2n=n interactions. This
means that each spin must have this number of ‘‘end
faces’’, i.e., faces at the end of a propagation that partici-
pate in a (many-body) interaction. For example, if we use
Fig. 2(b) to propagate s1 (i.e. we set J12 ¼ 1), then s1 has
two end faces, the left and the right one, each of which can
participate in, say, a three-body interaction like the one
shown in Fig. 2(c). But, as can be seen from Fig. 2(b), the
propagation of a particle (in 3D) essentially behaves as a
‘‘pipe’’ which has only two end faces. In fact, the number
of ends that an encoded particle of dimension de in a lattice
of dimension d can have are 2ðd� deÞ. Here we essentially
have de ¼ 2, and thus for d ¼ 3 the particle is blocked to
have only 2 ends. We need to resort to a 4D lattice in order
to obtain 2ðd� deÞ> 2 ends, and then this replication in
different directions can be multiply applied until the par-
ticle has 2n=n ends (see Fig. 3 for a replication of one spin
s1 into three other ‘‘end faces’’ s3, s5 and s6). We refer the
reader to [12] for the detailed construction. We remark that
all faces which are not mentioned in this construction have
to be deleted using the deletion rule. We also mention that
we have tried several other procedures to obtain this result
in 3D, but none of them could avoid the formation of loops
of edges fixed by the gauge.
This proves that we can generate a totally general

n-body interaction between n particles in a 4D Z2 LGT.
This includes all classical spin models with q ¼ 2 in
arbitrary dimensions d, arbitrary graphs, and arbitrary
interaction pattern. Moreover, by encoding a q-level par-
ticle in mq ¼ dlogqe two-level particles, this also includes

general interactions between n0 q-level particles, with n0 ¼
n=mq. This proves that the 4D Z2 LGT is complete for all

Abelian discrete classical spin models, including all
Abelian discrete LGTs and discrete SSMs.
2.5. Approximate completeness for Abelian continuous

LGTs and continuous SSMs.—We can go further and show
that the 4D Z2 LGT is also approximately complete for
Abelian continuous models, that is, the partition function
of a continuous model can be expressed, up to a certain
accuracy, as a specific instance of the partition function of
the 4D Z2 LGT. To see this, we just need to let q ! 1 (the
lattice spacing remaining discrete) and determine what
approximation can be obtained (see below).
2.6. Efficiency results.—The construction presented

above enables one to generate, from a 4D Z2 LGT,
Hamilton functions that contain M terms with at most
k-body interactions with an overhead that scales poly(M,
2k) for q ¼ 2. In the case of q-state models withM general

k0-body interaction terms, at most 2k
0mq Ising-type inter-

actions between k0mq two-level particles are required for

each term. Therefore, the overhead in the system size of the

FIG. 2 (color online). Spins fixed by the gauge are marked in
red. A single-body, a two-body and a three-body Ising-type
interaction with coupling strengths J1, J12, and J123 are shown
in (a), (b), and (c), respectively.
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4D Z2 LGTwith respect to the final model is polynomial if
k0 scales not faster than logarithmically, and q andM scale
polynomially with the system size. These criteria deter-
mine whether a given continuous SSM can be approxi-
mated efficiently. Abelian continuous LGTs usually have k
fixed (e.g. k ¼ 4), and thus they can be efficiently approxi-
mated by letting q ! 1 polynomially.

3. Implications of the main result.—We shall now draw
three conclusions from the main result.

3.1. Completeness of the 3D Z2 LGTwith fixed boundary
conditions.—As mentioned above, the only obstacle in
proving that the 3D Z2 LGT is complete was that the
replication of spins combined with the k-body interac-
tions caused loops of spins fixed by the gauge. This prob-
lem can be overcome by allowing for fixed boundary
conditions, i.e., fixing spins to zero at the boundary of
the 3D lattice. This means that the completeness results
for the 4D Z2 LGT also hold for the 3D Z2 LGTwith fixed
boundary conditions, which has the same bulk interactions
in the thermodynamic limit as the 3D Z2 LGT.

3.2. Mean-field theory for Z2 LGTs at fixed d � 4.—
While the mean-field theories of SSMs are easy to con-
struct, this is not the case for LGTs since Elitzur’s theorem
[13] prevents the nonvanishing mean value of a link vari-
able. This problem was circumvented using a saddle-point
approximation [14,15] with the inverse dimension 1=d as
an expansion parameter. The restoration of the gauge sym-
metry is nontrivial in this expansion. Here we propose a
new method that does not break gauge invariance and that
works for fixed d, with d � 4, which is based on the
construction of a k clique, i.e., a graph with all possible
(here, Ising-type) k-body interactions. Thus, constructing
such a graph is a way of averaging over the interaction of a
given particle with all the rest, and, hence, a way of
computing its mean-field theory. The construction of the

four clique for the 4D Z2 LGT has been shown in Sect. 2.4
(where we constructed the k cliques for all k ¼ 1; . . . ; n).
The same construction applies trivially to d Z2 LGTs with
d > 4, simply by not using the extra dimensions (see [12]
for further details). We mention that this method has
potential applications in computer simulations.
3.3. Computational complexity of the 4D Z2 LGT.—Our

results imply, in particular, that the partition function of
the 2D Ising model with magnetic fields can be expressed
as a specific instance of the partition function of the
4D Z2 LGT. Because the former is known to be #P com-
plete problem [16,17], we conclude that the problem of
evaluating the partition function of the 4D Z2 LGT in the
real parameter regime is #P hard, i.e., computationally
difficult. On the other hand, one can show that approximat-
ing the partition function of the 3D and 4D Z2 LGT in a
certain complex parameter regime with polynomial accu-
racy is as hard as simulating arbitrary quantum computa-
tions, i.e., BQP complete [12].
4. Outlook.—Our results provide a unification of all

classical models with very different features into a single
complete model, the 4D Z2 LGT. In particular, models with
different types of order parameters, as well as models
belonging to different universality classes can be obtained.
It will be interesting to use our results to gain further
insight in the structure of classical spin models.
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FIG. 3 (color online). Replication of spins in four dimensions.
Yellow faces represent the fourth dimension, and they have the
same meaning as blue faces, that is, s2 propagates into s3 by the
same method as it propagates into s4.
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