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We give an exact series expansion of the Casimir force between plane and spherical metallic surfaces in

the nontrivial situation where the sphere radius R, the plane-sphere distance L and the plasma wavelength

�P have arbitrary relative values. We then present numerical evaluation of this expansion for not too small

values of L=R. For metallic nanospheres where R, L and �P have comparable values, we interpret our

results in terms of a correlation between the effects of geometry beyond the proximity force approxima-

tion and of finite reflectivity due to material properties. We also discuss the interest of our results for the

current Casimir experiments which are performed with spheres of large radius R � L.
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The Casimir force is a striking macroscopic effect of
quantum vacuum fluctuations which has been seen in a
number of dedicated experiments in the last decade (see for
example [1,2] and references therein). One aim of the
Casimir force experiments is to investigate the presence
of hypothetical weak forces predicted by unification mod-
els through a careful comparison of the measurements with
quantum electrodynamics predictions. This aim can only
be reached if theoretical computations are able to take into
account a realistic and reliable modeling of the experimen-
tal conditions. Among the effects to be taken into account
are the material properties and the surface geometry. Note
that these effects are also able to produce phenomena of
interest in nanosystems [3,4].

A number of Casimir measurements have been per-
formed with gold-covered plane and spherical surfaces
separated by distances L of the order of the plasma wave-
length (�P ’ 136 nm for gold), making material properties
important in their analysis [5]. As those measurements use
spheres with a radius R � L, they are commonly analyzed
through the proximity force approximation (PFA) [6],
which amounts to a trivial integration over the sphere-plate
distances. An exception is the Purdue experiment dedi-
cated to the investigation of the accuracy of PFA in the
sphere-plate geometry [7], the result of which will be given
as a precise statement below.

In the present Letter, we give for the first time an exact
series expansion of the Casimir force between a plane and
a sphere in an electromagnetic vacuum, taking into account
the material properties via the plasma model (see Fig. 1).
We present numerical evaluation of this expansion which
are limited to not too small values of L=R, because of the
multipolar nature of the series. We show below that these
new results lead to a striking correlation between the
effects of geometry and imperfect reflection when eval-
uated for nanospheres, with R, L, and �P having compa-
rable values. In the end of this Letter, we also discuss the
interest of these results for the Casimir experiments per-
formed with large spheres R � L [7].

Our starting point is a general scattering formula for the
Casimir energy [8]. Using suitable plane-wave and multi-
pole bases, we deduce the Casimir energy EPS between a
plane and a spherical metallic surface in an electromag-
netic vacuum. The multipole series expansion is written in
terms of Fresnel reflection amplitudes for the plate andMie
coefficients for the sphere, and it is valid for arbitrary
relative values of the sphere radius R, the sphere-plate
distance L and the plasma wavelength �P. For the sake
of comparison with experiments, we assume �P ’ 136 nm
for both, the sphere and the plate. We occasionally also
consider the limit �P ! 0, where the formula reduces to
the case of perfect reflectors in an electromagnetic vacuum,
for which results were obtained recently [9–11].
In the following, we discuss the force F PS �

�@EPS=@L as well as the force gradient GPS �
�@F PS=@L which was measured in the experiment [7].
Wewrite the results deduced from the scattering formula as
products of PFA estimates by beyond-PFA correction fac-
tors �F and �G:

F PS � �FF PFA
PS ; F PFA

PS � �E

@c�3R

360L3

GPS � �GGPFA
PS ; GPFA

PS � �F

@c�3R

120L4
:

(1)

FIG. 1 (color online). The geometry of a sphere of radius R
and a flat plate at a distance L (center-to-plate distance L �
Lþ R); both mirrors are covered with a metal characterized by a
plasma wavelength �P.
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The PFA estimates F PFA
PS and GPFA

PS are proportional, re-

spectively, to the energy and force calculated between two
planes. They are written as products of ideal Casimir
expressions and factors �E and �F accounting for the
effect of imperfect reflection [5].

The beyond-PFA correction factors �F and �G appear-
ing in (1) are the important quantities for what follows. For
experiments performed with large spheres of radius R �
L, the deviation from PFA is small (�F ’ 1). Even in this
limit, it remains important to specify the accuracy of PFA
in order to master the quality of theory-experiment com-
parison [10]. This can be done by introducing a Taylor
expansion of the correction factors at small values of L=R

�F;G � 1þ �F;G

L

R
þO

�
L2

R2

�
: (2)

The only experimental result available on this topic [7]
may be stated as a bound on the �G factor, namely j�Gj<
0:4. On the theoretical side, analytical as well as numerical
calculations of this slope have been obtained for scalar
field models [12–16]. For the situation met in experiments,
with a plane and a sphere in an electromagnetic vacuum, an
estimation technique has recently been proposed where the
slope is deduced from a polynomial fit of the numerical
values obtained at intermediate values of L=R [9,10]. The
slope obtained in this manner is much larger (�8 times
larger) than expected from scalar field models [10]. As a
consequence, the value of �G falls out of the bound of [7],
in contrast with the scalar prediction which lies within the
bound. More precise statements on this point will be given
below.

On the other hand all these results correspond to perfect
reflection, whereas the experiment [7] was performed with
gold-covered surfaces. The apparent contradiction noticed
in the preceding paragraph may thus be cured if the value
of �G differs for metallic and perfect mirrors, that is also if
the effects of geometry and finite reflectivity are correlated.
We show in the sequel of this Letter that this is indeed the
case.

We start from the formula for the Casimir energy EPS

between two scatterers in vacuum [8]

EPS ¼ @

Z 1

0

d�

2�
logdetð1�MÞ

M � RSe
�KLRPe

�KL:
(3)

In the geometry depicted on Fig. 1 with a sphere of radius
R, a plate, and a sphere-plate separation L along the z axis
(center-to-plate distance L � Lþ R), RS and RP repre-
sent the reflection operators for the spherical and the plane
scatterers, respectively. They are evaluated with reference
points placed at the sphere center and at its projection on

the plane, respectively. The operator e�KL describes the
one-way propagation between these two reference points.
� is the imaginary field frequency integrated over the upper
imaginary axis.

In order to evaluate explicitly this expression, we use
two mode decompositions. The first one is a plane-wave
basis jk; �; pi� with k the transverse wave vector parallel

to the xy plane, p ¼ TE, TM the polarization, and� ¼ �1
for rightward or leftward propagation directions. It is
well adapted to the description of free propagation and

reflection on the plane: the propagation operator e�KL is

diagonal with matrix elements e�KL such that K ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=c2 þ k2

p
(k � jkj) while reflection on the plane pre-

serves all plane-wave quantum numbers but �. The non-
zero elements of RP are the standard Fresnel reflection
amplitudes rp. Given values of kðk; ’Þ and� ¼ �1 define

a direction in reciprocal space corresponding to the azimu-
thal angle ’ and a complex angle �� such that sin�� ¼
�i ck� and cos�� ¼ � cK

� .

The second basis, which is adapted to the spherical
symmetry of RS, is a multipole basis j‘mPi�, with ‘ð‘þ
1Þ and m the angular momentum eigenvalues (‘ ¼
1; 2; . . . , m ¼ �‘; . . . ; ‘) and P ¼ E, M for the electric
and magnetic multipoles. By rotational symmetry around
the z axis, M commutes with Jz. Hence it is block diago-

nal, with each block MðmÞ corresponding to a common

value of m and yielding a contribution EðmÞ
PS to the Casimir

energy EPS (opposite values �m provide identical contri-

butions). The contribution EðmÞ
PS is written as in (3) withM

replaced by the block matrix

M ðmÞ ¼ MðmÞðE; EÞ MðmÞðE;MÞ
MðmÞðM;EÞ MðmÞðM;MÞ

� �
: (4)

Each block in this matrix is the sum of TE and TM

contributions MðmÞðP1; P2Þ ¼
P

pM
ðmÞ
p ðP1; P2Þ. The diago-

nal blocks are written as

MðmÞ
TE ðE; EÞ‘1;‘2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2‘1 þ 1Þ
‘2ð‘2 þ 1Þ

s
AðmÞ
‘1;‘2;TE

a‘1ði�Þ

MðmÞ
TMðE; EÞ‘1;‘2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2‘1 þ 1Þ
‘2ð‘2 þ 1Þ

s
BðmÞ
‘1;‘2;TM

a‘1ði�Þ

MðmÞ
TMðM;MÞ‘1;‘2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2‘1 þ 1Þ
‘2ð‘2 þ 1Þ

s
AðmÞ
‘1;‘2;TM

b‘1ði�Þ

MðmÞ
TE ðM;MÞ‘1;‘2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2‘1 þ 1Þ
‘2ð‘2 þ 1Þ

s
BðmÞ
‘1;‘2;TE

b‘1ði�Þ;

(5)

a‘ði�Þ and b‘ði�Þ are the Mie coefficients [17] for electric
and magnetic multipoles. A and B are matrices which do
not depend on the radius nor on the refractive index of the
sphere and are written in terms of the spherical harmonics
Y‘;mð�;’ ¼ 0Þ and the finite rotation matrix elements

d‘m;m0 ð�Þ ¼ h‘;mje�i�Jy j‘;m0i [18]
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AðmÞ
‘1;‘2;p

¼ �im
Z 1

0

dk

K
ðd‘1m;1ð�þÞ þ d‘1m;�1ð�þÞÞ

� Y‘2mð��ÞrpðkÞe�2KL

BðmÞ
‘1;‘2;p

¼ � c

�

Z 1

0

kdk

K
ðd‘1m;1ð�þÞ � d‘1m;�1ð�þÞÞ

� @�Y‘2mð��ÞrpðkÞe�2KL:

(6)

Similar expressions are found for the nondiagonal blocks,
with the matrices A and B replaced, respectively, by

CðmÞ
‘1;‘2;p

¼ c

�

Z 1

0

kdk

K
ðd‘1m;1ð�þÞ þ d‘1m;�1ð�þÞÞ

� @�Y‘2mð��ÞrpðkÞe�2KL

DðmÞ
‘1;‘2;p

¼ im
Z 1

0

dk

K
ðd‘1m;1ð�þÞ � d‘1m;�1ð�þÞÞ

� Y‘2mð��ÞrpðkÞe�2KL:

(7)

In order to go further, we assume the materials to have a
dielectric response described by the plasma model 	ði�Þ ¼
1þ!2

P=�
2, with !P the plasma frequency and �P ¼

2�c=!P the plasma wavelength. Although the formalism
easily allows for different values of �P for both surfaces,
we take a common value as in the recent experiment [7].
We calculate the Casimir energy EPS and deduce the force
F PS and gradient GPS, both quantities being functions of
the 3 length scales R, L, and �P. The case of perfect
reflection [10] can be recovered as the limit �P � R, L
(see [19] for the opposite non-retarded limit). A large
distance limit may also be taken as �P, R � L. Its result
reduces to the Rayleigh expression [20] in the case (R �
�P) or to 3=2 of it [9,10] in the case (�P � R).

As already discussed, the PFA expression is also con-
tained in our general result, and it is recovered asymptoti-
cally for R � L. In the following, we discuss the results of
numerical computations of the ratios �F;G defined in (1)

which measure the deviation from PFA. For dimensionality
reasons �F;G are functions of two dimensionless parame-

ters built upon L, R, and �P (�E;F are functions of L=�P

only [5]) and they approach unity at the PFA limit L=R �
1. Their numerical computation is done after truncating the
vector space at some maximum value ‘max of the orbital
number ‘. As a consequence of the ‘‘localization princi-
ple’’ [21], the results are accurate only for R=L smaller
than some value which increases with ‘max. At the moment,
our numerical calculations are limited to ‘max ¼ 24, allow-
ing us to obtain accurate results down to L=R ’ 0:2 but not
in close vicinity of the PFA limit.

This method gives new and interesting results, in par-
ticular, for nanospheres having a radius R with the same
order of magnitude as the plasma wavelength �P. In this
case, we can perform accurate calculations for L having a
comparable magnitude, and thus explore the rich func-
tional dependence of �F;G versus two dimensionless pa-

rameters built up on L, R, and �P. Figure 2 shows the
results obtained for �F and �G with metallic and perfect

mirrors. Clearly the deviation from the PFA calculated for
metallic mirrors differs markedly from that already known
for perfect mirrors. For small values of L=R the violation
of PFA for the Casimir force and gradient turns out to be
less pronounced for metallic mirrors than for perfect mir-
rors, while for large values of L=R it is more pronounced.
However, at values L=R ’ 0:2we find a clear correlation

between geometry and finite reflectivity effects, therefore
making measurements with nanospheres at small plate-
sphere separations particularly interesting. This nontrivial
interplay becomes evident when a polynomial fit of the
numerical values of �F;G is used for inferring the behavior

at small values of L=R [9,10]. In Fig. 3 we plot the quartic
polynomial fits of the function �G for the two cases of
gold-covered and perfect mirrors. The curves were ob-
tained by finding the best fit of the numerically computed
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FIG. 2 (color online). Top graph: variation of �F as a function
of L=R, for a nanosphere of radius R ¼ 100 nm; the solid green
line corresponds to gold-covered plates (�P ¼ 136 nm) and the
dashed red line to perfect reflectors. Bottom graph: variation of
�G as a function of L=R, with the same conventions as in the top
graph. The decreases at low values of L=R represent a numerical
inaccuracy due to the limited value of ‘max ¼ 24.
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FIG. 3 (color online). Quartic polynomial fit of the function
�GðL=RÞ, for a nanosphere of radius R ¼ 100 nm; the solid
green line corresponds to gold-covered plates and the dashed red
line to perfect reflectors. The crosses represent numerically
evaluated points and the circles indicate those points which are
used for the fit.
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values of �G (crosses on Fig. 3) in the window 0:4<
L=R < 0:8 (circled crosses on Fig. 3) in the set of quartic
polynomials (Taylor expansion defined as in (2) and trun-
cated at fourth order). The left-hand bound of the window
is fixed by the requirement of using only points accurately
calculated with ‘max ¼ 24 while the right-hand bound is
determined by the truncation at fourth order of the Taylor
expansion. The best fits correspond to the following poly-
nomials for gold-covered (GM) and perfect (PM) mirrors,
respectively, (x � L=R)

GM : 1� 0:207x� 0:530x2 þ 0:645x3 � 0:249x4

PM: 1� 0:483xþ 0:297x2 � 0:221x3 þ 0:080x4:
(8)

The two fits are clearly different and this, in particular, is
the case for the values obtained for the slope at L=R ¼ 0.
The slope (�G ��0:21) obtained for gold mirrors differs
by more than a factor 2 from the one (�G ��0:48)
obtained for perfect mirrors. This is related to the bending
of the curve for gold mirrors at small L=R, which describes
the effect of imperfect reflection in the beyond-PFA factor
�G and has to be contrasted with the unbent curve for
perfect mirrors. For the same reason, we observe that the
slope obtained for gold mirrors is less stable under the
variation of the conditions of the best-fit procedure than
that for perfect mirrors. To appreciate the meaning of the
bending let us recall that the slope obtained for perfect
mirrors in an electromagnetic vacuum is �8 times larger
than expected from scalar computations [15,16] and one
cannot but notice that it lies outside the bound j�Gj< 0:4
of [7]. In contrast, the slope obtained for metallic mirrors
lies within the bound. Let us emphasize that there is no
contradiction between the results presented here (obtained
for nanospheres with R ¼ 100 nm) and the experiments
(performed with spheres having R> a few tenths of 
m).

For spheres with large radii (L=R > 0:2) the beyond-
PFA factors �F;G have the same values for gold-covered

and perfect mirrors, because the value of L is much larger
than �P. If we extracted a slope from these results, we
would obtain a value close to that of perfect mirrors, thus
lying outside the bound of [7]. However, the arguments
discussed before show that one should refrain from doing
so. Indeed, a bending of the curve has to be expected in this
case too, for values of L becoming comparable to �P and
thus much smaller than R. In contrast, this bending has no
reason to appear for perfect mirrors since there is no length
scale like �P in this case. If the bending is similar for large
and small spheres, it may turn out that the slope for gold-
covered mirrors meets the bound [7] while that for perfect
mirrors does not.

To sum up our results, we have written a new and exact
expansion for the Casimir force between plane and spheri-
cal metallic surfaces in an electromagnetic vacuum. The
results go beyond the proximity force approximation, and
show a clear correlation between the plane-sphere geome-
try and the material properties of the metallic surfaces.
They constitute a new step in the direction of accurate

comparisons between Casimir experiments and QED theo-
retical predictions. More work is needed to obtain exact
results for the Casimir force between a metallic sphere and
plate in the so far experimentally explored parameter re-
gion of L=R ’ 0:01, using, for example, different ap-
proaches based on semiclassical methods. Our results
also indicate a complementary way to observe deviations
from PFA and the interplay between geometrical and re-
flectivity effects in new experiments performed with
nanospheres.
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