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It is shown that the interface in a two-component Bose-Einstein condensate (BEC) with a dipole-dipole

interaction spontaneously develops patterns similar to those formed in a ferrofluid. Hexagonal, labyrin-

thine, solitonlike structures, and hysteretic behavior are numerically demonstrated. Superflow is found to

circulate around the hexagonal pattern at rest, offering evidence of supersolidity. The system sustains

persistent current with a vortex line pinned by the hexagonal pattern. These phenomena may be realized

using a 52Cr BEC.
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When a magnetic liquid (a colloidal suspension of mag-
netic fine particles) is subjected to a magnetic field per-
pendicular to the surface, the liquid is magnetized and the
surface undergoes a spontaneous deformation into charac-
teristic patterns such as horns growing from the liquid. This
surface instability is known as the normal field or
Rosensweig instability [1] and is a subject of active re-
search [2–8]. The system also exhibits a variety of phe-
nomena, such as hysteretic behavior [4], a transition
between hexagonal and square patterns [5], and stabiliza-
tion of a solitonlike structure [8]. Because of the visual
appeal of the pattern formation, the dynamics of the
magnetic-liquid surfaces are displayed even in art [9].

In this Letter, we show that a Bose-Einstein condensate
(BEC) of an atomic gas with a strong dipole-dipole inter-
action (DDI) [10] exhibits instabilities and pattern forma-
tion similar to those in magnetic liquids. We find that there
are many similarities between the present system and a
magnetic liquid, such as hexagonal, solitonlike, and laby-
rinthine [11] pattern formation and hysteretic behavior.
Moreover, novel phenomena unique to the present super-
fluid system are found. The hexagonal pattern remains
stationary even in the presence of superflow, offering
new evidence of supersolidity [12]. We also show that
the hexagonal pattern pins a vortex line, thereby sustaining
persistent flow.

The system considered here is schematically illustrated
in Fig. 1. A two-component BEC is used, in which the
atoms in component 1 have a magnetic dipole moment and
the atoms in component 2 are nonmagnetic. A magnetic
field is applied to fix the direction of the fully polarized
magnetic dipoles (say, in the z direction). A magnetic-field
gradient in the z direction pulls the atoms in component 1
in the�z direction, so that the two components separate as
illustrated in Fig. 1. In analogy with a magnetic-liquid
system, the interface between the two components corre-
sponds to the magnetic-liquid surface, the field gradient
plays the role of gravity, and the quantum pressure and

contact interatomic interactions create an interface energy,
corresponding to the surface tension of a magnetic liquid.
The Rosensweig instability in magnetic liquids occurs
when it lowers the sum of magnetic, surface, and gravita-
tional energies.
A two-component BEC is used because texture forma-

tion [13] is energetically more favorable than density-
pattern formation. For the density pattern to be formed in
a single-component BEC [14,15], the DDI must overcome
the contact interaction, which however leads to a dipolar
collapse [16]. Quasi-two-dimensional (2D) systems have
been considered as a way of stabilizing density patterns
(2D solitons) without a dipolar collapse [17,18]. Use of a
multicomponent dipolar BEC [19] is another possible way
of creating pattern formation without suffering a dipolar
collapse.
We consider a two-component BEC described by the

macroscopic wave functions c 1 and c 2 in the zero-
temperature mean-field approximation. The wave func-
tions obey the nonlocal Gross-Pitaevskii (GP) equations

FIG. 1 (color). Schematic illustration of the system. A two-
component BEC is confined in a trapping potential, in which
component 1 has a magnetic dipole moment and component 2
does not. The magnetic dipole is polarized in the z direction by
an external magnetic field. The two components are separated
due to the field gradient B0ðzÞ< 0.
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whereMn and Vn are the atomic mass and trap potential for
component n ¼ 1 or 2. The coupling constants are given by
gnn0 ¼ 2�@2ann0=Mnn0 with ann0 andMnn0 being the s-wave
scattering length and the reduced mass between compo-
nents n and n0. The DDI has the form UðrÞ ¼ �0�

2ð1�
3z2=r2Þ=ð4�r3Þ, where �0 is the magnetic permeability of
vacuum and � is the magnetic dipole moment of the atom
in component 1. For simplicity, we assume that the two
components have the same mass M and the same number
of atoms N=2 and that they experience the same axisym-
metric harmonic potential given by Vn ¼ M=2½!2

?ðx2 þ
y2Þ þ!2

zz
2�, where!? and!z are the radial and axial trap

frequencies. Gravity only shifts the origin and can be
neglected. The magnetic field depends only on z, and
dB=dz � B0 is uniform. We assume � ¼ 6�B and a11 ¼
a22 ¼ a12 ¼ 100aB with �B and aB being the Bohr mag-
neton and the Bohr radius, respectively, and take M to be
the mass of a 52Cr atom.

We first investigate stationary states of the system, ob-
tained by replacing i with �1 on the left-hand sides of
Eqs. (1a) and (1b). The numerical propagation is per-
formed using the Crank-Nicolson scheme and the dipolar
part is calculated using a fast Fourier transform. The initial
state of the imaginary-time propagation is a flat-interface
state�n for a sufficiently large jB0jwith small initial noise
c n ¼ �n þ rn, where rn represents a small complex num-
ber randomly chosen for each mesh.

Figure 2(a) shows an isodensity surface of component 1
for B0 ¼ �1 G=cm. The hexagonal density bumps on the
interface between the two components resemble the
Rosensweig pattern on a magnetic-liquid surface. Since
the density is high and hence the DDI is large at the center
of the trap, the peaks around the center are higher than
those on the periphery. Figure 2(b) shows the column-
density profiles integrated along the z axis. Components
1 and 2 exhibit a phase separation in the x-y plane [left and
middle panels of Fig. 2(b)], since the DDI is attractive in
component 1, resulting in an effective immiscible
condition.

When the field gradient is increased or the number of
atoms is decreased, the number and height of the peaks
decrease [Figs. 2(c) and 2(e)] and eventually the interface
becomes flat [Fig. 2(d)]. There is hysteresis with respect to
a change in the field gradient. When jB0j is increased from
1 G=cm, the hexagonal pattern reduces to a single peak
[Fig. 2(c)], which then disappears at B0 & �1:66 G=cm.

On the other hand, when jB0j is decreased from a large
value, the interface remains flat [Fig. 2(d)] for B0 &
�1:64 G=cm. Therefore, there is a bistable region around
jB0j ’ 1:65 G=cm, in which the single-peaked state and
the flat-interface state are bistable. In the bistability re-
gion, the energies of the two states are almost degener-
ate. The hysteresis can be demonstrated by real-time
propagation of the GP equation with an adiabatic change
in the field gradient. Such hysteretic behavior has been
predicted [3,7] and observed [4,8] for magnetic liquids.
The single-peaked structure in the bistable region, as
shown in Fig. 2(c), is reminiscent of the ‘‘ferrosoliton’’
[8] in a magnetic liquid, which is a stable solitonlike peak.
Around the peak, the interface oscillates in a concentric
manner [inset in Fig. 2(c)], as in the ferrosoliton [8].
There are various metastable patterns for smaller values

of the field gradient, as shown in Fig. 3 for B0 ¼
�0:3 G=cm. To trigger these various pattern forma-
tions, we use various initial seeds. For example, Fig. 3(a)
is obtained by applying an additional magnetic field

FIG. 2 (color). Stationary states of the two-component dipolar
BEC for a11 ¼ a22 ¼ a12 ¼ 100aB and � ¼ 6�B in an axisym-
metric potential with ð!?; !zÞ ¼ 2�� ð100; 800Þ Hz.
(a) Isodensity surface of component 1 and (b) column densitiesR jc 1j2dz,

R jc 2j2dz, and
Rðjc 1j2 þ jc 2j2Þdz normalized by

NM!?=@ for the field gradient B0 ¼ �1 G=cm. The color in
(a) represents the z coordinate in units of ð@=M!?Þ1=2. (c)–
(d) Column densities of component 1 for B0 ¼ �1:65 G=cm
(bistable). The inset in (c) shows isodensity surface near the
central peak. The total number of atoms is N ¼ 4� 106 for (a)–
(d) with an equal population in each component. (e) Column
density of component 1 for N ¼ 6� 105 and B0 ¼ �0:2 G=cm.
The color gauge is 0-0.003 for (b)–(d) and 0-0.0045 for (e). The
field of view for (b)–(e) is 50� 50 �m.
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/ sinðkxxþ kyyÞ for t < 1 ms in the imaginary-time

propagation, where kxa? ¼ ffiffiffi
3

p
and kya? ¼ 1 with a? ¼

ð@=M!?Þ1=2. We find that the imaginary-time propagation
relaxes the system to the stripe pattern as shown in
Fig. 3(a). This pattern is robust against small perturbations.
The initial temporary magnetic field for Fig. 3(b) is

/ cosð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
=a?Þ. The concentric pattern in Fig. 3(b)

is stable against axisymmetry breaking perturbations.
Figure 3(c) is obtained without an additional magnetic
field, with only small random seeds added to the initial
state. These results imply that there are many metastable
states with various patterns. In Fig. 3(c), the peaks partly
merge with each other. The merging of the peaks tends to
occur for a large DDI and a small field gradient. For B0 ¼
�1 G=cm, the stripe and concentric patterns in Figs. 3(a)
and 3(b) are unstable against peak formation.

A striking difference between the present system and
magnetic liquids is that the present system is a superfluid,
while a conventional magnetic liquid is a normal fluid.
Figure 4 shows a stationary state with component 1 having
a vortex line at x ¼ y ¼ 0. The Rosensweig pattern
emerges even in the presence of superflow. We note that
the pattern in Fig. 4(a) is stationary and does not rotate in

the laboratory frame despite the fact that the superflow
circulates as shown in Fig. 4(c). This situation has a close
analogy to supersolidity [12], where crystalline order and
superflow coexist. We also note that the vortex line in Fig. 4
is pinned at x ¼ y ¼ 0 by the surrounding peaks. The
system therefore sustains persistent flow without any ex-
ternal pinning potential.
If component 2 has a magnetic dipole moment oppo-

site to that of component 1, a quite different pattern is
formed. Figure 5 shows a stationary state of the system, in
which components 1 and 2 have magnetic moments 6�B

and �6�B, respectively. The intricate pattern shown in
Figs. 5(a) and 5(b) is reminiscent of the labyrinthine pat-
tern in an immiscible magnetic and nonmagnetic liquids
confined in a thin layer [11]. The pattern formation occurs
even for N ¼ 105 as shown in Fig. 5(c), which can be
realized in current experiments. Since magnetic liquids
are paramagnetic (not diamagnetic), a mixture of two fluids
with opposite magnetizations is impossible. For a BEC, by
contrast, a magnetic moment of each atom is conserved if
spin exchange is suppressed, and a mixture of opposite
magnetic moments, such as mJ ¼ �3 of 52Cr, is main-
tained once it is created by, e.g., the rf technique.
Next we study the dynamics of the pattern formation in a

nondissipative system by solving the real-time propagation
of Eq. (1). Figure 6 shows the time evolution of the system,
where the initial state is a flat-interface state for B0 ¼
�1:7 G=cm and other conditions are the same as those in
Fig. 2. We let the system evolve in time with B0 ¼
�1 G=cm, for which the stable state has hexagonal peaks,
as shown in Fig. 2(a). The density fluctuations grow to
form many peaks, as in Figs. 6(b) and 6(c), due to the
Rosensweig instability. We note that the characteristic
wavelength in the pattern at an early stage [Fig. 6(b)] is
smaller than that at a later stage [Fig. 6(c)]. This difference
indicates that the most unstable wavelength in the linear
regime does not correspond to the final stable pattern
determined by the nonlinear interaction. A similar situation
also occurs in magnetic liquids [6]. If the phenomenologi-
cal dissipation is taken into account by replacing i with,
e.g., i� 0:03 [20] in Eq. (1), the hexagonal pattern is
formed at �50 ms.

FIG. 4 (color). (a) Column density of component 1 and
(b) argc 1ðz ¼ 0Þ for a stationary state, in which component 1
has a vortex line at x ¼ y ¼ 0 and component 2 has no vortex.
(c) Magnitude ðJ2x þ J2yÞ1=2 (height) and direction argðJx þ iJyÞ
(color) of the atomic flow J ¼ a3?

R
Imc �

1rc 1dz. The parame-

ters are the same as those in Fig. 2(a).

FIG. 5 (color). Column density for stationary states, in which
components 1 and 2 have magnetic dipole moments 6�B and
�6�B, respectively. The field gradient is B0 ¼ 0. (a) and
(b) N ¼ 4� 106. (c) N ¼ 105. The field of view is 50�
50 �m for (a) and (b), and 30� 30 �m for (c).

FIG. 3 (color). Isodensity surface (upper panels) and inte-
grated column density (lower panels) of component 1 for various
stationary states. The difference among (a)–(c) arises only from
initial seeds in the imaginary-time propagation. The field gra-
dient is B0 ¼ �0:3 G=cm. The other parameters are the same as
those in Fig. 2(a).
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A candidate for components 1 and 2 is the 7S3 mJ ¼ �3
and 0 states of a 52Cr atom. Though themJ � �3 states are
unstable against dipolar collisions, the lifetime is long
enough (� s) [10] to observe the pattern-formation dy-
namics, unless the external magnetic field is too small
(&1 mG). The spin-exchange dynamics, such as mJ ¼ 0,
0 ! �3, 3 [21], can be suppressed using, e.g., the laser-
induced quadratic Zeeman effect [22,23]. The scattering
lengths measured in Ref. [24] give a22 ’ 60:7aB þ a0=7
and a12 ’ 67:8aB, with a0 being the scattering length for
the colliding channel with total spin 0, which is unknown.
The scattering length a11 can be controlled using the
magnetic Feshbach resonance [25], where the resonance
width 1.7 G [24] is much broader than the inhomogeneity
of the magnetic field �1 G=cm� 10 �m. We can there-
fore realize a11 � a22 � a12 � 60aB by changing a11, if
ja0j is not very large. We have confirmed that the
Rosensweig pattern emerges for these scattering lengths.
Another possibility for component 2 is an alkali atom, for
which, however, a12 has not been measured yet. The
situation in Fig. 5 is realized with the mJ ¼ 3 state of
52Cr for component 2, where the spin-exchange dynamics
can be suppressed by a negative quadratic Zeeman energy
[22]. In this case, a11 ¼ a22 ’ 100aB and a12 ’ 2:85aB þ
2a0=7 is assumed to be tuned to �100aB.

If the dipole moment of component 1 is decreased to
�B=2, which corresponds to spin-1 alkali atoms,N must be
�108 for the same trap frequencies and the same scattering
lengths as those in Fig. 2. We can reduce N to ’1:0� 105,
if polar molecules with an electric dipole moment of 0.1
Debye are used. For the same trap frequencies and mag-
netic dipole moment as those in Fig. 2, the scattering
lengths can be ða11; a22; a12Þ ’ ð100; 85� 108; 100ÞaB
and ð100; 100;* 97ÞaB. There is a scaling property char-
acterized by dimensionless parameters, Naij=a?,
�0�

2N=ð@!?a3?Þ, �B0a?=ð@!?Þ, and !z=!?, and simi-

lar phenomena should be observed for the same set of
these parameters. For example, the situation in Fig. 2(e)

can also be realized for N ¼ 105 and ð!?; !zÞ ¼ 2��
ð3:6; 28:8Þ kHz.
In conclusion, we have studied pattern formation on the

interface in a two-component BEC with a DDI. We found
various interfacial patterns, including Rosensweig hexago-
nal peaks and a labyrinthine pattern. We also observed
hysteretic behavior and the ferrosoliton, as in magnetic
liquids. The novelty of the present system compared with
magnetic liquids is that superflow can circulate around the
Rosensweig pattern at rest, which provides new evidence
of supersolidity. The Rosensweig peaks pins a vortex line
and the system sustains persistent current. The two-
component system proposed here thus exhibits a rich vari-
ety of phenomena, which may be realized using a BEC of
52Cr atoms or polar molecules.
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